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[2179] IDENTIFICATION OF MODEL PARAMETERS OF A REIN-
FORCED CONCRETE BRIDGE BY KALMAN FILTER THE-
ORY

Andres W.C. ORETA* and Tada-aki TANABE”

ABSTRACT

The application of system identification to existing structures is an important step towards
the aim of estimating the existing conditions and degree of damage and deterioration of struc-
tures.

In the present study, system identification using the Kalman filter method is applied to an
in-situ reinforced concrete bridge to identify its modal parameters, i.e., natural frequencies and
damping ratios. The free vibration response data obtained {from field vibration tests is used in
the identification. Results from the system identification are compared to those obtained from
spectra analysis. An analysis of the numerical convergence of the parameters is discussed.

1. INTRODUCTION

The increasing importance of the problem of system identification and parameter estimation
as applied to structural engineering, particularly in connection with the estimation of the
existing condition of structures for the assessment of damage and deterioration, has led to the
development of different system identification and parameter estimation techniques. One of
the various techniques that has become increasingly popular in recent years is the Kalman
filter method. The Kalman filter method has been successfully applied to linear multi-degree
of freedom (MDOF) systems and to single DOF nonlinear systems. In the case of linear MDOF
systems, only structures with no more than three DOF have been considered, and in most cases
the response and observation data used were numerically simulated. The application of system
identification using Kalman filter to in-situ structures seems lacking.

In the present study, system identification using the Kalman filter method is applied to an
in-situ reinforced concrete bridge. Using an identification technique based on modal analysis,
the modal parameters, i.e., natural circular frequencies and the damping ratios, are estimated.
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Field vibration tests are conducted to obtain data for the purpose of the identification. Results
from the system identification are compared with those obtained by spectra analysis. An
analysis of the numerical convergence of the parameters is also discussed.

2. MODAL EQUATIONS OF MOTION

The governing equation of motion for a multidegree of freedom linear system under free
vibration is generally given by
MZ + CZ + KZ = 0, (1)

in which M, C,K = nx n mass, viscous damping and stiffness matrix, respectively.

Let ¢ and y be the mode-shape matrix and the generalized response vector of the system,
respectively. Substituting Z = @y, Eq. (1) can be transformed into a set of uncoupled modal
equations as

§i + 2hw;9; + wly; =0, (2)
in which h; and w; are the modal damping ratio and natural circular frequency of the jth mode
shape. From Eq. (2), we can derive the modal response of the ith displacement as

iy + 2h,w it + wfu;j =0, (3)

where ui; = ¢,;y;, #i; = the element of & associated with the jth mode and the ith dis-
placement. Hence, u;; is the jth mode contribution to the ith displacement and for every ith
displacement, we have n-set of equations of the form Eq.(3). The total ith displacement , when
the effects of all the modes are taken into account is obtained by superposition as

Zi =uip+up+ -+ U, (4)

3. MODAL PARAMETER IDENTIFICATION
3.1 STATE SPACE FORMULATION
Using the following state vector defined as
X;={z1, 52 23 245 z55}7
={wy %y %y hy wl®, (5)

Eq. (3) can be transformed by using the linear acceleration method into a discrete state vector
representation as

z1,(k+1) D1134;(k) + Diazo;(k) + Diazs;(k)
T9;(k+1) Dy131;(k) + Dagzaj(k) + Dazzs;(k)

XJ(]C-{-]) = 5531'(]6—‘}-]) = Dglzlj(k)+D321‘2J(1€)+D3313]'(k) :gj(k) (6)
z4;(k +1) z4;(k)
zs5;(k + 1) zs;(k)

where,
Di =14 (At)’Dy/6, D1y = (At)(1+ (At)D3/6), Dyz = (At)?(1+ Dy4/2)/3,
Dy = (At)D;;/Z, Dy =1+ (At)D3/2, Dy3 = (At)(] + D4)/2,
D3y = Dy, D3y = Dy, D33 = Dy,
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with,
Dy = —(1+ (At)za;(k)zs, (k) + (A1)*x3;(k)/6) 7",
D2 = Dlzgj(k),
D3 = Dy(2z4j(K)as;(k) + (At)z3,(k)),
Dy = Dy(At)za;(k)zs;(k) + (At)?z2,(k)/3).

Considering the first several predominant modes (I <
n), the state equation of the system becomes

Table 1. The Kalman Filter Algorithm

(1) Store the filter state:
z(k/k) and P(k[k)

(2) Compute the predicted state:
z(k+1) = ®(k+1/k)z(k/k)

(3) Compute the predicted error covariance :
P(k+1/k) =&k +1/k)P(k 4+ 1/k +1)8T (k + 1/k)
+0(k+ 1)Q(k 4+ )T (k + 1)

(4) Compute the Kalman gain:

K(k+1)= P(k+1/k)MT(k +1)
x[M(k+ 1)P(k+ 1/E)MT (k +1)
+R(kE 4+ 1)

(5) Process the observation y; 4

(k4 1/k+1)=z(k+1/k)
+K(k+1)[yaar = M(k+ 1)2(k + 1/k)]
(6) Compute the filtered error covariance:

Xl(k+l) gl(k) PU‘*l/"‘H):U—K(:-Fl)M(k+1)]P(k+1/k)
Xo(k+1) go(k) X[ = K(k+ )M(k 4 1)

- N = 2 + rw(k)’ (7) (T)-:u’a\;(::lk)ftl" :nld)}:et(:r: ]t)o step (1).
Xi(k+1) gi(k)

where w(k) is the system noise vector with covariance matrix Q(k) and T is the coefficient
matrix of the system noise. When the acceleration is used as observation, then the
corresponding observation vector equation can be written as

X1 (k)
X2 (k)

Y(k)z[0’07]!0!0)l01071)0)05l"'] +v(k)7 (8)

Xl'(k)

where v(k) is the observational noise vector with covariance matrix R(k)

3.2 STEP-BY-STEP PARAMETER ESTIMATION

Incorporating Eq. (7) and (8) in the Kalman filter algorithm (Table 1) and using a weighted
global iteration[2] for convergence purposes, the parameters z4;(= h;) and z5;(= w;) were
estimated using a step-by-step approach [3] as follows:

1. First, the system is considered as a single DOF and the approximate values of the first
modal quantities are obtained. This step is referred to as NM=1(free) step.

2. The second modal quantities are identified by considering the system to have two DOF. In
this case, the first modal quantities obtained in step 1 are used as initial values for the elements
of the state vector corresponding to the first mode and the corresponding diagonal elements of
the error covariance matrix are set equal to zero. This step is referred to as NM=2(fixed) step.
3. Using the estimates of the first step and second step as initial values for the first and second
modal quantities, respectively, system identification is performed again and new estimates for
the first and second modal quantities are obtained. This step is referred to as NM=2({ree)
step.

4. Procedures similar to steps 2 and 3 are applied to the third and higher modes, as necessary.

4. VIBRATION MEASUREMENTS AND DATA ANALYSIS

A field vibration test was carried out on an existing multi-girder slab reinforced concrete
bridge - the Uomi bridge (Fig. 1) which is located at Fukui prefecture. An impact vertical
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force was applied at a specific node of the bridge deck using a weight-drop equipment and the
vertical acceleration at selected nodes were measured using strain-gauge type accelerometers
which were installed at the bottom part of the girders. From the digital data acceleration
response, the power spectral density was calculated using FFT method and by peak picking,
the natural frequencies and damping ratios were obtained. These calculated modal values will
be used for comparison later. In this paper, the impact force was applied at node 9 (Fig. 2a)
and the resulting vertical acceleration at node 2, for example, is shown in Fig. 2b.
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FIG. 1. Configuration of Uomi Bridge. (a) Elevation (b) Plan and Notation of Nodes (c)
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FIG. 2. Field Vibration Measurements. (a) Impact force at Node 9 (b) Vertical
acceleration at Node 2

5. RESULTS OF SYSTEM IDENTIFICATION

The step by step parameter estimation procedure was applied at selected nodes of the
bridge. Only the portion of the time history from 1 sec. to 4 sec. was used in the filter for free
vibration analysis. A time increment of 0.001 sec. and a weight value of 100.0 in the global
iteration was used. Results of the identification for nodes 2, 7, 8, 13 and 14 are shown in Table
2. For these nodes, the filter was convergent only for the first mode.

Table 2. Estimated Parameters for One-Mode Identification (h; : damping ratio, w; : natural circular
frequency in radians/sec.)

Node hy(Initial) | hi(Estimated) | wi(Initial) wi (Estimated)
2 0.10 0.085258 20.0 59.6004
7 0.10 0.027355 20.0 74.7669
8 0.10 0.067281 20.0 54.2946
13 0.10 0.043061 20.0 67.2518
14 0.10 0.070077 20.0 55.5611
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A typical behavior of the numerical convergence of the first modal parameters for nodes
2, 7, 8, 13 and 14 is illustrated by Fig. 3. Fig. 3 shows the behavior of w; at node 2. It is
shown that the parameter starts to converge at the start of the 8th global iteration. Extending
the identification to two modes for nodes 2, 7, 8, 13 and 14, divergent or unstable solutions
resulted. For example at node 2, an unstable behavior of the parameters w; and w, can be
seen in Fig. 4. So the identification was terminated for these nodes.
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FIG. 3. Convergence of w, at Node 2 FIG. 4. Behavior of w; and w, at Node 2
NM = 1 (free) Step (Two-mode Identification)

When the step-by-step identification was applied at nodes 9, 10, 15 and 16, on the oth-
erhand, convergence extended upto the second mode. But at the three-mode identification,
divergent or unreasonable results were also obtained. So the identification was also terminated
for these nodes. Results of the step-by-step procedure at node 9 are shown in Table 3.

Table 3. Estimated Parameters for Two-Mode Identification at Node 9 (h; : damping ratio, w; :
natural circular frequency in radians/sec.)

Initial value Estimated values
NM=1({ree) NM=2(fixed) NM=2(free)
hy 0.10 0.036533 — 0.010295
Wy 20.0 89.3398 - 50.5704
ho 0.10 - -0.118966 0.011467
woy 100.0 - 122.7250 132.0980

A comparison of the results from system identification with those obtained from spectra
analysis is shown in Tables 4 and 5. It can be seen in these tables that the natural frequencies
were reasonably estimated especially at the nodes where two-mode identification (Table 5) was
applicable. The damping ratios, however, were poorly estimated.

Table 4. Comparison of Results for Nodes Identified with One-Mode Identification (h; : damping ratio
in percent, f; : cyclic frequency in Hertz)

Node hy(Spec. Anal.) | hi(Est.) % Error [ fi(Spec. Anal.) | fi(Est.) | % Error
2 1.3305 8.82585 540.80 8.0625 9.4857 17.65
7 1.2490 2.7355 119.02 8.0566 11.8995 47.70
3 1.2899 6.7281 421.60 8.0625 B8.6412 7.18
13 1.3115 4.3061 228.33 8.0557 10.7034 32.86
14 1.2170 7.0077 475.82 8.0576 8.8428 9.74

Table 5a. Comparison of First Mode Results for Nodes Identified with Two-Mode Identification

Node hi(Spec. Anal.) | Ay(Est.) [ % Error [[ fi(Spec. Anal.) | fi(Est.) | % Error
9 1.3325 1.0295 -22.74 8.0518 8.0485 -0.04
10 1.3206 4.6610 252.94 8.0615 7.8819 -2.22
15 1.2878 3.3981 163.87 8.0752 7.9478 -1.58
16 1.2994 3.6355 179.78 8.0664 7.9425 -1.54
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Table 5b. Comparison of Second Mode Results for Nodes Identified with Two-Mode Identification

Node ha(Spec. Anal.) | hy(Est.) [ % Error || f2(Spec. Anal) | fy(Est.) | % Error
9 1.9342 1.1467 -40.71 23.4189 21.0240 -10.23
10 1.0157 4.8230 151.76 23.4140 21.2790 -9.12
15 -1.8688 3.2646 74.69 23.4499 18.9978 -18.99
16 1.9000 2.5414 33.89 23.4297 19.6645 -16.06

An interesting observation is worth noting from the study which is summarized in Table
6. If we examine the power spectra graphs for the nodes analyzed, it can be seen that for
nodes where only one-mode identification was successful the value of the power spectra at
f1 was extremely dominant than that at f,. On the otherhand, for nodes where two-mode
identification was successful, the value of the power spectra at f1 and f, were both dominant.
It seems that the modal parameters converged upto the most significant modes only. The
power spectra graphs at nodes 2 and 9 are shown in Fig. 5 for comparison. The location of
the dominant values of the power spectra can be seen to lie between the range 5-10 Hz for f;
and 20-25 Hz for f, as identified.

UOMI BRIDGE C1G1 : NODE 2 UOMI BRIDGE C1G1: NODE ¢

Table 6. Power Spectra (P.S.) in cm?/sec? Acceleration Wave Acceleration Wave
(* one-mode, ¥+ two-mode) F‘ F&
Node ['PS.atf, | PS.at 0 00 SR odl e
7 3.106 0.360 f 0
& 6.441 3579 B %
8 6.789 0.4246 <
9 7.500 3.476 L i
10° 7.703 9.072 i :
13° 2.716 2.309 - ;
14° 3.437 0.6558 RS IEIEE N b R e
15°* 3.781 5.308 Frequency (hertz) Frequency (hertz)
16** 3.867 5.380 FIG. 5. Power Spectra Graphs at Selected Nodes.

6. CONCLUSION

The results of the study on the identification of natural {requencies are very encouraging.
Reasonable estimates of the dominant frequencies can be identified provided that the corre-
sponding mode is appreciably excited. Damping was poorly estimated. These relatively poor
results may be due to the assumption of proportional damping which may not be true for this
case. A more comprehensive research must be conducted to study the effects of sampling time,
sampling length, initial values and observational noise on the identification. With an in-depth
study, the consistency of the results of the identification can be verified.

REFERENCES

1)  Tanabe, T. and Mizuno, T.: Study on the Identification of Dynamic Response Parameters
of RC Structures, Proc. Int. Conf. on Highrise Buildings, 1989, pp. 499-504.

2)  Hoshiya, M. and Saito, E.: Structural Identification by Extended Kalman Filter, J. Engrg.
Mechanics, ASCE, Vol. 110, No. 12, December 1984, pp. 1757-1770.

3) Maruyama, O., Yun, C.B., Hoshiya, M. and Shinozuka, M.: Program EXKAL2 for
Identification of Structural Dynamic Systems. NCEER Technical Report, No. NCEER-
89-0014, May19, 1989

—1056—



