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[2208] Micromechanical Model for Triaxial Behavior of Concrete
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1. INTRODUCTION

The early phenomenological macroscopic models for concrete are based on an almost
never-ending process of modifications of the classical theories. However, it is very difficult
to imagine that many aspects of the material response can be easily modeled by a unified
general theory in which the real mechanical response of the material microstructure is
not involved. Thus, the utility of the phenomenological macroscopic models for concrete
is at best of limited value. Alternatively, an approach, which is known as the microscopic
approach and is based on the local view of the material properties, seems to be more
promising. This paper focuses on the microscopic approach.

In the present study, a micromechanical model which can precisely predict the tri-
axial behavior of concrete is formulated. The current model is an extension of the model
which was originally introduced by Farahat, Wu and Tanabe [3, 4] to predict the mono-
tonic and cyclic behavior of concrete in the two-dimensional domain. The microcracking,
which is the most relevant cause of non-linearity, is assumed to be localized at the thin as
well as the thick mortar layers between coarse aggregates. For this purpose, concrete is
idealized to have two kinds of contacts, aggregate-aggregate and aggregate-mortar con-
tacts. The behavior of these contacts is defined and distinguished. Finally, an explicit
formula which expresses the tangent stiffness matrix of the material as a summation of
the contributions of all contacts at the different thicknesses, inside the representative
volume, is derived. The basic assumptions of the proposed model were experimentally
verified [9]. The proposed model is in contrast to Bazant’s microplane model [1] in which
the microcracks are assumed to be localized only in the thin layers of mortar and no
experimental work has been conducted to verify the fundamental assumptions of the
model. Finally, comparative results between the available test data and the analytical
results are included. The proposed model has shown its capability to verify accurately
all test data.
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2. THEORETICAL CONSIDERATION
2.1 AVERAGE STRESS TENSOR FROM AVERAGES CONTACT FORCES

In order to consider the microcracks at the thin and the thick layers of mortar,
concrete is idealized to have two types of particles; aggregate and mortar particles.
Moreover, every mortar particle is assumed to be surrounded by aggregate particles.
This idealization enables us to observe the behavior not only at aggregate-aggregate
contacts, i.e. thin layers of mortar, which has been studied by Bazant et al. [1] but also
at aggregate-mortar contacts, i.e. thick layers of mortar. Using the average volume of
stresses [8], if Aoy, is the stress state which is in equilibrium, the average stresses Ady;
and Ag;} within an aggregate and mortar particles can be written as follows (3, 4, 8]:

L

>
QI
-]
Il
| =
=
>
)
<
QL
(]

—m 1
bl LT (1-a) AG]; = U_m/u"' BIGAY sasswize (1-b)
where v* and v™ are the volumes of an aggregate and mortar particles, respectively.
The macroscopic mean stress Ag;; for any representative volume can be obtained by
summing the stresses within the internal particles as follows (3, 4, 9):

AGy; = %[ D AGH v + Y Al ™ ] (2)

in which V' is the total volume, ¥, and T,, represent the summation of all aggregate
and mortar particles, respectively. Using the divergence theory and the equilibrium
condition (i.e. Ao;;; = 0), the volume integral in eq.(1) can be converted to surface
integral which can be replaced by the summation of the discrete boundary tractions. If
the results obtained are substituted in eq.(2), the macroscopic mean stresses in eq.(2)
can be simplified as follows [3, 4]:

Ay = o TARE + DA + TA ) (3)
1 2 2

where C; and C, are the total number of contacts between aggregates alone and between
aggregate and mortar particles. f; and I; are the contact force and the contact vector at
any contact. If the contacts are grouped within a finite number of orientational intervals,
the grouped average AfI(2) in eq.(3) can be calculated. To consider the distribution
of the orientation of contacts, the function E(f) is defined. This function considers
the relative frequency of contacts with different orientations of normals. The number
of contacts with normals between Q and 2 + AQ is CE(Q)AQ (C is the total number
of contacts). Since the current study considers concrete as an isotropic material, this
function was defined [8] to be equal to E(Q) = 1/4r. For a large number of contacts and
very small orientational intervals, eq.(3) can be written in the next integral form [3, 4]:

AGy; = %" /n AfPH(Q) nSH(Q)E(Q)dQ + %l_l /n AFE(Q) nSH(Q)E(Q)dQ +
(’%12 /n AFQ) nP(Q)E@Q)dQ  (4)

where [; and I, are the average radii of the aggregate and mortar particles, respectively.
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2.2 AVERAGE CONTACT FORCES - STRAIN TENSOR RELATIONSHIP

In the beginning the contact force vector A ff is decomposed into normal and shear
force components as follows:

AfQ) = AF(Q): + AFHQ)) (5) s

Using the contact law, the normal and shear force vec- A(e})’;
tors are linked with the corresponding normal and shear A

) A e -
strain vectors at the contact as shown in Fig.1 as follows: somagh

A(fH(Q)i = Ky A (en): (6)
X1
A(ff(Q)): = Ks A (ee): (M (a) Strain Components
It has been found experimentally [9] that the local nor- ~
mal strains for a group of contacts with the same orien- A(F)i
tation can be considered as the resolved components of
the macroscopic strain tensor. Therefore, the following A
relations can be easily obtained: Biluiie b ok
A(En); = n; np my Aéy (8) AR G
i Comtact .o
Alee): = [Snru — nimemy ] Agu (%) (b) Force; Ccl')mp‘onents

Substituting eqs.(8) and (9) into eqs.(6) and (7) and the
resulting value into eq.(5), the following results can be
obtained:

AfH(Q) = [Knnimen + Ks { Sy — nimpmi }] Ady (10)

in which Ky and K are the normal and shear stiffnesses at the contact, n are the
direction cosines of the unit normal to the contact. 6 is the Kronecker’s unit delta
tensor.

2.3 INCREMENTAL MACROSCOPIC STRESS- STRAIN RELATIONSHIP

By substituting eq.(10) into eq.(4), the following incremental macroscopic stress-
strain relationship can be obtained:

Ac_nj == D;‘jkl Aéy (11)

where Dy = 171/ [ £ nimy ngmy + k2 {bxnym —ninjmem}]dQ+
Q

Fig.1 Strain and Force
Components at the Contact

T / [k ninjnem + k2 {Saun;my — ninjnem}]dQ (12)
Q
with m = Cl 1_1(11/4 ™ V, m = Cz 1_162/4 TV + Cz 1_262/4 ™ V,

kit = KIC\;/&I’ k= KICJ/aZ’ kS = K?/al) kg = ]{;‘2/62
Both (c1, @;) and (c3, @) refer to the contacts and the average contact areas between
aggregate-aggregate and aggregate-mortar particles. k, and k, are the normal and shear
stiffnesses which can be obtained from the normal microscopic stress-strain relationship.
In this study k, is assumed to be linear with k, (i.e. k, = \k,).
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2.4 NORMAL STRESS-STRAIN RELATION OF THE CONTACTS

Aggregate - Mortar Contact: The stress strain On ﬂ
relation for the contact relating o, to ¢,, must describe
the cracking and the damage all the way to complete Eq.(13)
fracture or failure, at which o, reduces to zero. It has
been found experimentally [9] that o, as a function of ¢,
must first rise, then reach a maximum, and then grad-
ually decline. However, egs.(13) and (14), which are
shown in Fig.2-a, are proposed for the contacts in ten-
sion and in compression as follow:

E -
for e, >0 on = Erep ezp[ —(Fz)” (Z—)P] (13) (a) Aggregate-Mortar Contact
1 t .
On

fore, >0 o0, = Ej e, ezp| —|-Z-5|P‘] (14) g,? Eq.(15)

where ¢, €. ,p and p; are material constants, E; and E, £t €n
are the initial micro-stiffnesses of aggregate-aggregate
and aggregate-mortar contacts, respectively. Eq.(16)

Aggregate-Aggregate Contact: The normal ;
stress-strain relationships proposed by Bazant et al.[1] [ {110 1.
are used here. These relations are given in egs.(15) and Elv
(16) and shown in Fig.2-b.

" (b) Aggregate-Aggregate Contact
fOT En2>0 o, = E e, ezp[ _(_")P] (15)
i Fig.2 Stress-Strain Relationship

for e, <0 o, = —Cy+ Cytan™'[Cs(e, — C,)](16) at the Contacts

where, C; = —027f., C,=0.87f,, Cs=115&), and C,= -—51; tan (%

3. THE RELATION BETWEEN MACRO AND MICRO VARIABLES

If the macroscopic strain tensor &;; is assumed to correspond to uniaxial strains,
ie. & # 0 and & = &, = 0, and by using the spherical coordinates, the corresponding
macroscopic stresses can be calculated. Comparing the results with Hooke’s law, the
following relations can be found:

1 -2 4m

V = = tieeeeee (17'—0) E — E (3+2A) (nlEl 4 7]2E2) ........ (17—b)
in which v and E are the macroscopic elastic Poisson’s ratio and Young’s modulus. A,
E,, E,, m, and 7, are microscopic characteristic variables which were defined before. In
the numerical calculation, the proposed algorithm by Bazant et al.[1] is used. Based on
this algorithm [1], the integral of eq.(12) can be obtained as follows:

N
/anQ=2[47rEwaFu (18)
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in which subscript o refers to set of directions in space and w, are the weights(numerical
integration coefficients). In all analysis, eq.(18) with N=21 directions is used.

4. VERIFICATION OF THE PROPOSED MODEL

In the beginning, reasonable values of the parameters, which describe the charac-
teristic properties of the contacts, are selected as follows, p = p;=2.5(eqs.(13), (14) and
(15)), v=0.18(eq.(17-b)), m /n=0.10, n; + 7, = 1 and E;/E,=1.80 [3, 4]. These values
were kept constant in all calculations. Finally, only ¢, and &, in egs.((13), (14) and (15))
are considered to be variable parameters. A sample of the results is shown in Figs.3, 4 and
5. Fig.3 shows the comparison between the uniaxial (tension and compression) test data
and the model results. In Fig.3-a (uniaxial tension), the value of ¢, = 0.0016 (eq.(14))
is kept constant and the value of & (eqs.(13) and (15)) was estimated by eq.(19-a) [3,
4]. In eq.(19-a), f; and E are the macroscopic tensile strength and Young’s Modulus. In
Fig.3-b (uniaxial compression), the value of £,=1.5x10~3 (egs.(13), (15)) is kept constant
and the value of €. was estimated by eq.(19-b) [3, 4]. In eq.(19-b), f. and E are the
macroscopic compressive strength and Young’s Modulus of concrete.

= i E) ™ rnainss (19—a) e = (f./E)***......... (19-b)
; -50
el Mo | — Moaa
\E.« ) -40+ '
4 1.0 fe=1.56 MPa 5 = fe=43.6 MPa
5 E = 16.5x10° MPa E E = 38.0x10% MPa
0.0 Strain (x 107%) < _30-
0.0 0.2 0.4 5 f.=32.71 MPa
o 3
Lol ® é 1as! E = 27.0x10° MPa
9;3 & fi =212 MPa
Z 101 fe=2.11 MPa =10 E = 17.0x10° MPa
3 E = 17.5x10° MPa
@ o Strain (x 109) ol I Stralln (x 107%)
0.0 0.2 0.4 0.0 -20 -4.0
(a) Uniaxial Tension [2] (b) Uniaxial Compression [5]

Fig.3 Comparison with Uniaxial Test Data
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Fig.4 Comparison with Biaxial Tension-Compression Test Data of Ref.[7]
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Figs.4 and 5 show the comparison with the biaxial and triaxial test data. In Figs.4 and
5, the values of ¢, and &, were calculated using eq.(19). The two variables satisfy the
uniaxial behavior (tension and compression) of concrete.
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Fig.5 Comparison with the Test Data of Ref.[6]

5. CONCLUSIONS

A micromechanical model which can accurately predict the triaxial behavior of
concrete is developed. The proposed model is constructed in order to accurately con-
sider all possible sorts of microcracks which are apparently localized at the thin as well
as the thick layers of mortar between coarse aggregates. The behavior at the contacts
with different thicknesses is defined and distinguished. Finally, an explicit formula of
the stiffness matrix as the contribution of all contacts with different thicknesses is de-
rived. The conceptual simplicity of the proposed model is rewarded by ease of material
identification. The model showed its capability to predict the available test data.
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