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1. INTRODUCTION

Analysis of the localization,the phenomenon that large strains concentrate into a thin band
without affecting the other portions of the structure, is thought to be a major challenge in
computational mechanics. Many methods in finite element with a discontinuous field have
been proposed to successfully solve this problem [1][2].No matter which method is used, the
one point quadrature scheme is considered to be the most efficient one.

It has been known for long time that one-point quadrature scheme provides tremendous
benefits in nonlinear algorithms because the number of evaluations of the semidiscretized gra-
dient operator, commonly know as the [B] matrix, and the constitutive equations, is reduced
substantially.

However, the use of one-point quadrature scheme results in certain hourglass modes, or
zero-energy modes. If a mesh is consistent with a global pattern of these modes, they will
quickly dominate and destroy the solution. Some methods have been proposed to deal with
this phenomenon. Those include the one proposed by Kosloff and Frazier[3], Flanagan and
Belytschko[4]. The method proposed by Kosloff and Frazier has been thought to be the most
effective and the easiest to understand particularly for rectilinear elements.

In the paper written by Kosloff and Frazier, their hourglass control method was proven to be
correct and effective in the elastic analysis, but nothing was included in the scope of nonlinear
analysis. In this paper, a method to control the hourglass modes in nonlinear calculation is
developed. A modified scheme is proposed to obtain the accurate response of the structure
in nonlinear region. The discussions of this paper are confined within the rectangular linear
element. The research for a more general case will be presented in future publications.

2. HOURGLASS CONTROL METHOD[3][5]

The strain energy in an element U, can be expressed as:

T = %{u}T[K] {u} = %{u}T /VE[B]T[D][B]dv o) e %/v T D{av (1)
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where {u} is the displacement vector, [ K ] the element stiffiness matrix, [ D | the material
constitutive matrix, [ B ] the strain matrix and {g} the strain vector.

Fig.1 shows the eight independent displacement modes of a four-node plane element. Modes
7 and 8 are bending modes. Since 0,0, and 74, are always zero at their center, according to
eq.(1), U, becomes zero when using one-point (center point) integration.

To control these zero-energy modes, restraints are introduced, but at the same time without
influence on the element’s response to the already existing modes that have already been
working well. For simplicity, consider only the x-direction nodal displacement {U.} of the
element shown in Fig.1 . For modes 1 and 8, {U,} = 0, and an arbitrary combination of
modes 2 through 7 is

{uz} = {ua} + {us} + {wa} + {us} + {ue} + {ur}
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To provide mode 7 with the stiffness which it lacks under one-point quadrature, add [ K];
to the element stiffness matrix,where

[K]7 = {ur} {ur}” (3)

By the same way, [K]g can be obtained to prevent B . u 5
the mode 8 occurring. I

It is possible to choose values of a7 and ag such
that a rectangular element displays the exact strain ]
energy caused by the pure bending. So in this case

E B L E AL i :
a7 = (355 7)% as = (1552 (4)
where A B are the length of the element (Fig. 1) and
E the young’s modulus. Finally, the hourglass control e
matrix is obtained as: 7 8

[Kn = [K]7+ [K]s (5) X B

So the element stiffness matrix can be obtained Fig.1 Independent displacement
i modes of a four-node plane
; . ; element
(K] = [K]gs+ [K]n (6)

where [K ]g4 is the retilinear element stiffness matrix calculated by one-point integration.
3. ONE-POINT INTEGRATION RULE IN NONLINEAR CALCULATION

3.1 Tangential Stiffness Matrix

It has been proven by Kosloff and Frazier, that using eqs.(5) and (6) in elastic region, the
result of the element stiffness matrix turns out to be the same as that obtained by using the Q6
incompatible element[6]. In inelastic region, to obtain the tangential stiffness matrix, different
values of E; and E,, which are corresponding to the up-dated material constitutive matrix
[D.,] of material, should be substituted into eq.(4), that is
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By setting the stress vector {¢} = (0,,0,0,)” Jand substituting it into the up-dated stress-
strain relation [Depl{e} = {0} , 0, = E.&,; can be obtained and E, can be evaluated. By the
same way, by setting {c} = (0,0,,0)T,E, can be evaluated.

3.2  Strain and Stress Calculation

When eq.(6) is used to evaluate the stiffness, and the equation {e} = [B]{u} is used to
calculate the strain,the strain is correct only at the center point, because the strain do not
include the one corresponding to modes 7 and 8.

Since {u} is known, it is possible to calculate the strain and stress caused by hourglass
modes (pure bending modes). For simplicity, first consider the x direction bending mode.
Suppose the element has the nodal displacement along x direction as shown in Fig.2. The
total nodal displacement can be divided into three modes, mode 2, 3 and mode 7. So the strain
caused by mode 7 at the point at y distance from the x axis will be

Y (d4—d2_d3—d1>

€

=TT BT 2 2 v =0 i

where d; (i = 1,2,3,4) is the nodal displacement along x direction.

The stress caused by the mode 7 are ,ldat_ Yi ”d“f“—

Tz7 = EI£!E7) Oy7 = 0 (9) E Z Gy | G | - : Y

G, G, | «x \ +
In the same way,0,3,0,3 can be evaluated. By q ry T
adding oz7,0y7,0,¢ and oyg into the stress at center ~ld ;‘_‘“"‘“"
point,the correct stress at any point of the element can
be evaluated. These stresses are shown to be the same
as those obtained by Q6 element.

(]

3.3 The Residual Force - |m, f=

From eq.(6), we can write W
([Klos + [K]n) {u} = {R} (10) 247 \
where {R} is the element nodal force. e = =

So obviously the equivalent nodal force caused by
mode 7 and 8 are

=1(deds | died ded; _ dy-
m, Q_(T" - J~2_J.) m,,:%(_th & % )

{Fn} = [K]x {u) (11)  Fig.2 Strain caused by hourglass

) _ mode
so the equation to evaluate the residual force is

{Q} = {R} - {F} - {F)} (12)

where {F} = [, [B]T[D][B]dv.
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4. MODIFIED METHOD

Because of the similarity between the hourglass control method and the Q6 incompatible el-
ement, the results obtained by using Q6 incompatible element naturally are taken as a checking
criterion in nonlinear calculation when the mentioned hourglass control method is used.

At the center of the element, the stress state, which is the average stress of the whole
element, is used to estimate the response of the element. So it can be reasoned out that, when
the stronger are the bending mode 7 and 8 ( which means the stress along x and y directions
change a lot from one side of the element to the other side of the element, the extreme case is
the pure bending of one element), the larger are the difference between the element response
obtained by using the hourglass control method and that obtained by using Q6 incompatible
element method. This will be shown in numerical examples latter in this paper.

To solve the problem of this inaccurate response of the element when one-point integration
method, prescribed from section 3.1 to 3.3, is used in nonlinear analysis, a modified method is
proposed as follows:

1. Use eq.(6) to evaluate the element stiffness matrix by one-point integration rule.
2. Use section 3.2 to calculate the stress at the point of 2 x 2 Gauss points.
3. Use the stress at 2 x 2 Gauss points to estimate the nonlinear response of the elements.

4. According to the equation {F} = [, [B]T {o} dv,use the stress at 2 x 2 Gauss points to

Ve
calculate the equivalent nodal forces of the element.

In step 3, when the 2 x 2 Gauss points are used to estimate the nonlinear response of
the element, different values of [De,) of these four points can be obtained, by averaging these
four [D,] and using eq.(7) to calculate the element stiffness [K], the convergence rate will
become higher when tangential stiffness method (the element stiffness are recomputed during
each iteration of load increment) and combined algorithm (the element stiffness are recomputed
for first iteration of each load increment only) are used in nonlinear analysis.

Compared with the Q4 element, obviously,the modified method can reduce time greatly
in the stiffness matrix calculation and has the benefit of accuracy of evaluating the bending
response of the element. Compared with the Q6 incompatible element, it can reduce time
greatly in calculating the stiffness matrix and the stiffness matrix condensation and at the
same time it has the same accuracy response in both linear and nonlinear analysis.

5. NUMERICAL EXAMPLE

In this section, arc-length method[7] is used in the two-dimensional nonlinear finite element
program in order to obtain the post peak response of the structure. Before the peak point, the
tangential stiffness method is used, and after the peak point, the initial stiffness method is used.
In this section OPI method denotes one-point integration with hourglass control, MOPI method
the modified method described in section 4, Q4 element the 4-node guadrilateral element, Q6
element the incompatible element .

A beam is subjected to a transverse external force at the middle of the span. Three types
of meshes used to stimulate the response of the beam, are shown in Fig.3. Fig.4 shows the
material properties with young modulus £; = 2.1 x 10%kg/cm?, plastic modulus F; = 0 and
the uniaxial yield stress o, = 2500kg/cm?. The material is assumed to follow J; theory.

Fig.5 to Fig.7 show the load versus displacement curves by using mesh(a), mesh(b) and
mesh(c) respectively.
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When the Q6 element or MOPI method is used, the same results can be obtained as those
obtained by OPI method in linear region. OPI method can accurately represent flexural modes
of the deformations in shallow structures(like the beam in this example, even for mesh(a)
or mesh(b) where fewer elements are used, rather accurate results can be obtained), but Q4
element behaves stiffer. So to analyze a shallow structure in the elastic region, OPI method is
a recommendable method, because of saving time, using fewer elements and having accurate
results, but it is not in the case of nonlinear analysis. In the nonlinear region, the OPI method
gives a bad estimation of the structure response (as shown in Fig.5 and Fig.6 , unless a more
refined mesh is used (as mesh(c)) .On the other hand, as shown in Fig.5,6,and7 , MOPI
method can give as accurate results as Q6 element both in linear and nonlinear region and
consume much less calculating time . So as nonlinear analysis is involved, MOPI method is a
recommendable method.

Without hourglass control,the nonlinear calculation can seldom be carried on because of
the affection of the hourglass modes. Fig.8 shows the deformed mesh(c) without hourglass
control when very small external force is applied onto the structure. Fig.9 shows the deformed
mesh(c) using MOPI method.

8. CONCLUSIONS

A method was developed to eliminate hourglass instabilities in four-node rectangular ele-
ments in nonlinear problems. A modified scheme has been presented to obtain accurate non-
linear element flexural response. Through numerical calculations, it has been proven that this

modified scheme can give as accurate results as the Q6 incompatible element[5] and consnme
less time.
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