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#@3 The Finite Element with Inner Linkage Rods
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ABSTRACT: In this paper, a new technique for modeling the crack behaviors of concrete
structures is described, where the softening band (crack) inside the element is represented by
two rods whose behaviors follow the fracture-oriented constitutive relations. This new method,
like the discrete model, can reflect the localized nature of cracking and at the same time can
easily be implemented into the commonly used finite element program to analyze any arbitrary
concrete structures. In this paper, examples with different kinds of meshes are used to show
the objectivity of this method.
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1. INTRODUCTION

Up to now, to describe the cracking of concrete, two different approaches are often used:
the discrete approach and the smeared approach. However, there are still some problems
existing. The discrete approach is attractive physically, as it reflects the localized nature of
cracking, but its numerical implementation is hampered by the need for letting the cracks
follow the element boundaries, thereby requiring the introduction of additional nodal points or
rearrangement of the original mesh. Smeared model have been widely used in finite element
analysis. However, for some problems, as pointed out by Shirai,N.[1] and Rots [2], it is doubtful
that the smeared model can suitably simulate a localization of fracture and unloading behaviors
in surrounding region for the reason of stress locking.

In view of this, in this paper, a way is developed to correctly reflect the localized nature
of crack and at the same time to be easily implemented into finite element program to analyze
arbitrary concrete structures. Basically, this method uses the discrete model but overcomes its
disadvantage. So, like the discrete model, the problem of stress locking does not exist in this
method.

2. FINITE ELEMENT WITH INNER LINKAGE RODS ELEMENT

In this research, the rod linkage element is used to represent the localized crack and to
link the unloading concretes on two sides of this crack. This rod linkage element is composed of
two rods, which follow the fracture-oriented constitutive relation. Fig.1 shows the rod linkage
rods element. Rod A is the rod describing the tension behavior of the crack and Rod B the
shear slip behavior of the crack. Fig.2(a) and Fig.2(b) show the finite element with inner
linkage rods when single crack occurs.
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The procedure to implement this kind of element can be described as follows:

1. For every element in the mesh the maximum principle stress at the center of the element
is calculated out. The'stress state at the center of the element can simply obtained by
averaging the stresses at 2x2 Gauss points when 4-node isoparametric elements are used,
or directly using one-point integration rule [3]. This calculation is repeated at every step
of the solution process until the maximum principle stress is equal to or larger than the
tensile strength of the material, that means that a crack occurs through the center of the
element.

2. From this point on, the finite element where the crack occurs, is replaced by the finite
element with inner linkage rods that is mentioned above. The crack with angle « , shown
in Fig.2(a) and Fig.2(b), is normal to the maximum principle stress. The crack length
L can be calculated out and the section area of Rod A and Rod B are equal to Lt/2,
where ¢ is the thickness of this element. The inner freedom related to points a, b, ¢ and
d can be eliminated at element level by means of static condensation,.by this way the
stiffness matrix related with points 1, 2, 3 and 4 can be obtained.

When the crack goes through or near the diagonal nodes of the element, the finite ele-
ment with inner linkage rods shown in Fig.2(b) should be used, otherwise the element shown
in Fig.2(a) should be used for ensuring that the element has a good shape and good per-
formance. To use this method to analyze concrete structures, the only thing to do is, first,
making a subroutine using displacements control method to describe the nonlinear behaviors
of the substructures (shown in Figs.2 (a)(b)), and then, implementing this subroutine into the
common used finite element program.

3. FICTITIOUS CRACK MODEL

Figure 1:
The fictitious crack model was first introduced by Hiller-

borg, et al. [4] and in its original form, it is a discrete ap-
proach. When the crack opens the stress is not assumed to
fall to zero at once, but to decrease with increasing width,
as shown in Fig.3. At the crack width w,; the stress falls to
zero. Energy dissipated D; per unit crack area, is related to
the area under the o — w curve of Fig.3, i.e.,

The rod linkage element

(2)

th/u“ cdW = G (1)
0

where G is the fracture energy, i.e., . the energy required 3
to-create a fully open crack plane of unite area, and wy is
shown in Fig.3.

&>

In the application of the fictitious model, the curve (b)
o(w) may be chosen in different ways. In the analysis of

this paper, the curve shown in Fig.4 is used.
Figure 2:

The element with

inner linkage rods
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4. ROD ELEMENT FOR SIMULATING THE

TENSION BEHAVIOR OF THE CRACK %)
4.1 LOADING BEHAVIORS f
Assuming the rod has the unit length, the loading
stress-strain relation curve of Rod A can be shown by Fig.4. &
We assume the initial stiffness of the rod element Er = f
100 x E., where E. is the Young’s modulus of the concrete, ° -
in order to make sure that before the crack occurs, the differ- W, w
ence in displacements at two ends of the rod is small enough. Figure 3:
The fictitous crack model
ft Gy Gy .
== & = 0.75— £y =5-L 2 of Hillerbor
P Er ! fe ? fe @ A
%)
ERe 0<e<eg L
0.75fi(e — €
t —&.{;(_G—L Ep <€ <&
7= file —& < @)
462—81 g1 << &
e2<¢ fira
o bt e
ERr 0<e< Ep € £ €, €
_0.75f e, <e< e Figure 4:
€1 —E&p P .
E = _ + B 5 8 (4) The stress-strain curve
4(e2 — €1 ! = inner linkage rod A
0 g2 <€ o

where f; is the tension strength of the concrete and Gy is
the fracture energy of the concrete material.

4.2 UNLOADING AND RELOADING BEHAVIORS (a) /4

In practice, it is also important to have realistic mod- o-]”“ e, &€
els for the closing and reopening of cracks, especially when

the crack localization phenomenon occurs. Loading and un-
loading correspond to the strain increasing and decreasing '
situation in analysis.

Assume that at point (oy,&y), ep < €y < €3, the un- (b)
loading is detected, the path of unloading will follow the fua
Eq.(5) as shown by Fig.5(a). of

(e — Ben
(7-{ (l_ﬂeu Peuse (5)
Eg(e — Peu) £ < Pe

where Eg has the same meaning as in Eq.(2). f is the (c)
material parameter, if 3 is chosen as zero, this corresponds

to fully recoverable crack width, whereas, # = 1 corresponds

to total irrecoverable crack width as shown in Fig.5(c). In

this study, § is chosen to be 0.

Figure 5:
If e, > €2 the unloading and reloading path follow Thf unloading behaviors of rod A

Fig.5(b).
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5. ROD ELEMENT FOR SIMULATING THE
SHEAR SLIP BEHAVIOR OF THE CRACK

The original fictitious crack model considers only the
behavior of a crack loaded normal to the crack plane. In
reality, crack planes are often exposed to shear. From the
experimental observation [5], when the crack occurs, the tan-
gential crack displacement w; depends on both the shear
stress and the normal crack displacement w,. Note that ¢ U
both the Rod A and Rod B have the unit length, we can Figure 6:
write Displacement of the rod element

&0 = f(r,en) (6) t

where ¢, is the strain of Rod B, and 7 is the stress of Rod
B and ¢, is the strain of Rod A.

.} ot
For Eq.(6), a simple form as in Ref.[6] is used as
_ En Figure T: fe
T G—aT ( The uniaxial stress-strain curve
In order to fit with the experiment result [5], G is (em) Thickness 6
taken as 3.8 MPa. s L
}_ﬁ 25 A{
6. TANGENTIAL STIFFNESS MATRIX FOR Fi .
igure 8:

ROD ELEMENT )
Dimension and boundary

Fig.6 shows a rod element in global coordinates X-Y, condition of example 1

with angle 6 to X axis. The stiffness matrix of the rod with

reference to the global coordinate will be il ®

2L LLLLLLLL

L T
K] = 4, / (B] E [BIf da
0
C2 SC —C2 —S8C 160
_ AE | —sc s —sc —s? (8)
- 2 2
L | -c e S 777777777777
=8C '—C —8C S

(cm) I..__L_.I
where E is the Young’s modulus of the rod, while A, is the Figure 9:

section area of the rod and ¢ = cosf, s = sinf. Dimension and boundary
condition for example 2

7. NUMERICAL EXAMPLE

The problems analyzed below are assumed to be the plane stress problems. Drucker-
Prager type constitutive equation with the uniaxial stress-strain curve in Fig.7 is employed to
describe the compressive behaviors of concrete.

For each example, with respect to different load levels, the crack patterns, which indicate
the orientation and width of the cracks, will be shown. When the width of the crack is equal to
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zero( this means the crack has closed), this crack will not be drawn. From these crack patterns
the procedures of opening and closing of the crack can be seen clearly.

The first example is a plain concrete prism subjected to prescribed uniform displacements
at both ends. The dimension and the supporting condition are shown in Fig.8. The material
properties are as follows: E = 2.1 x 10%kgf/cm?, f; = 26.3kgf/cm?, f. = 190kgf/em? and
Gy¢ = 100N/m = 0.1kg/cm. Two kinds of mesh 16 x 8 and 8 x 4 are used to demonstrate the
objectivity of this method and shown in Fig.12. The imperfection elements, are embedded in
the center of two sides of the bar. The imperfection element has the same material properties
as the other elements but the thickness is reduced to 3em. The load-displacement curves are
shown in Fig.10 with two kinds of mesh used. The results are shown in Fig.12 depicting the
crack patterns at different load levels. The objectivity of this method can be demonstrated by
Fig.10.

The second example is a pain concrete wall subjected to shear displacement as illustrated in
Fig.9. A series of computation were carried out with uniform design of finite element meshes
with increasing refinement(4 x 4, 6 x 6 and 8 x 8). The progressive development of crack with
regard to different stages is depicted in Fig.13. The inherent objectivity of the numerical
results with respect to the choice of the finite element mesh is reasonably well demonstrated
in Fig.11. In Fig.13, it is well demonstrated the crack opening and closing procedure, and at
step ¢ the structure finally fails with a major failure zone. The analytical failure modes are
shown by Fig.14.

8. CONCLUSIONS

In this paper, a new technique for modeling the crack behaviors of concrete structures
is presented, where the crack inside the element is represented by two rod elements whose
behavior is based on the fracture-oriented constitutive relations. It has been confirmed by the
numerical results in this paper that this new method is objective with respect to the choice of
the element size, that it can reflect the localized nature of cracking and that it can be easily
implemented into the commonly used finite element programs to analyze any arbitrary concrete
structures.
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