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am3  Prediction of the Ultimate Flexural Strength of Externally
Prestressed PC Beams
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ABSTRACT: The computation of the ultimate flexural strength of externally prestressed members
requires a rigorous analysis methodology, since the tendon stress is member dependent rather than
section dependent as in the beams with bonded tendons. As such, there is a necessity for a rational
design equation to be used for the design of such beams. This paper describes the parametric
evaluation conducted to investigate the influence of important factors that affect the ultimate strength of
externally prestressed members. Based on these results a new design equation is proposed to predict
the ultimate strength of prestressed beams with external prestressing.
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1. INTRODUCTION

Prestressed concrete bridges with external prestressing have become popular in the current
construction trend due to its advantages such as a) reduced web thickness, b) possibility of repairing or
re-strengthening of existing structures, etc. From the flexural analysis and design viewpoint, external
tendons can be treated as unbonded tendons provided secondary effects and frictional forces at
deviators are neglected. The ultimate flexural analysis of such beams offers an additional difficulty, in
comparison to the beams with bonded tendons. The stress increase in the external or unbonded tendons
beyond the effective prestress due to applied loading is member dependent rather than section
dependent. In addition, it has been shown by Matupayont [1] and Alkhari [2], that the eccentricity
variations could have a marked influence in the ultimate strength of externally prestressed beams. As
such, it is necessary to consider the change in tendon position at ultimate state in the case of external
prestressing for a better prediction of the ultimate flexural strength.

A nonlinear analytical methodology using a multi-level iterative technique has been developed to
predict the complete flexural behavior of external tendons considering the above mentioned factors [3].
However, there is a need for a simplified design method to predict the ultimate flexural strength of such
beams. Many prediction equations have been proposed by various investigators to compute the stress
at ultimate in unbonded tendons. Nevertheless, it is a question whether these equations can be applied
to external prestressing. To the best of authors' knowledge, the only equation that considers the
eccentricity variation is the one proposed by Mutsuyoshi et.al [3]. Based on a similar approach, an
attempt is made in this study to incorporate other factors that influence the ultimate tendon stress. An
extensive parametric evaluation was conducted using the rigorous analysis and using these results, a
modified equation is proposed to predict the tendon stress at ultimate in externally prestressed beams.
The accuracy of the proposed equation is compared with the other equations.
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2. BASIS OF THE PROPOSED METHODOLOGY

The general form of the ultimate tendon stress for unbonded tendons can be expressed as follows:

fps = fpe + Afps (€))

where f, is the ultimate tendon stress, f,, is the effective initial prestress and is the Af, increase of
tendon stress.

In the existing prediction equations the estimation of Af, varies based on the equations An
evaluation conducted by Naaman [4] show that there was room ‘for improvement not only in terms of
accuracy but particularly in accounting for the variables that were found to influence most the value of
Joe AS such, a new equation was proposed by Naaman [5] for the prediction of ultimate tendon stress
in beams with unbonded tendons, based on the concept of strain reduction coefficient Q. This reduces
the member dependent analysis to a simplified section dependent analysis. The proposcd equation can

be expressed as follows, with the notations as defined in [5]:
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fp.\' = fpe * Ep\Q ELM( . 1)

where Q, is the strain reduction coefficient defined as the ratio of the strain increase in unbonded
tendon to the strain increase in concrete at the tendon level of the maximum moment section. Based on
the data collected from 143 beam tests carried out by various investigators the value of Q  was
proposed as follows:

2.6[1.5]

Q, = Td,,_,- for one-point loading
541(3.0 ¥
Q, = 2 Bl for third-point or uniform loading
Lid,

This equation was later adopted by the AASHTO (1994) [6], with the recommended coefficients for
given within brackets in Eq. (3).

The applicability of the above equation to beams with external prestressing was carried out by
Mutsuyoshi [3] and was found that it is necessary to take into account the change in tendon position at
ultimate state. As a result, the concept of depth reduction factor R, that estimates the ultimate tendon
position, was introduced for the prediction of the ultimate flexural strength of beams with external
prestressing. Based on a parametric study, the following equation was proposed.

dpu
b g sasEon) £

where the ultimate tendon position d,, is given by the following expression:
dpu = R d dps (5)

In the above equation, Q, and R, were function of span-to-depth ratio (L/d, ), deviator distance-to-span
ratio (S/L) and loading span-to-span (M /L). The above equation has glven the best results among all
the prediction equations. However, the limitation is that it cannot be used for beams with combined
prestressing consisting of internal bonded and external tendons. In the current study, the above
approach is extended to incorporate the important parameters including the influence of internal bonded
tendons.
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3. PARAMETRIC EVALUATION

From the preceding discussion, it is evident that several factors influence the ultimate tendon stress
of beams with unbonded or external tendons which in turn affects the ultimate flexural strength. An
extensive parametric analysis was conducted considering the important factors. The variables and the
number of cases considered in the parametric study are summarized in Table 1. A total of six
parameters were selected covering the most practical range. Accordingly, the possible number of cases
that need to be analyzed totaled 2592. However, using a sampling process, the actual number of cases
analyzed were reduced to 864, one third of the above value. The material properties of reinforcements,
prestressing steel and concrete were kept constant for all the cases. The layout of the PC beam model
used in the analysis is shown in Fig. 1. It was a simply supported beam having a '"T" section. The
external tendons were draped by two deviators and the loading was two point.

A nonlinear analytical program has been developed to predict the flexural behavior of PC beams
with external prestressing. This methodology is based on a multi-level iterative technique taking into
account the nonlinear constitutive models of materials, compatibility of deformation and change of
eccentricity. The flow-chart describing this procedure is described in reference [3]. The predicted
behavior by this program gave excellent correlation with experimental observations. As such, this
program was used to investigate the influence of the above mentioned factors on the ultimate tendon
stress in an externally prestressed member.

Table 1: Summary of variables used in parametric evaluation

No. Description of variables Range Increment No. of cases
1 |Span-to-Depth ratio (L/d,) 5-35 5 6
2 |Loading span-to-Span ratio (L /L) 0.00-0.33 0.11 4
4 |Bonded-to-Total tendon arearatio (A, ;,/A, ) 0.00-0.75 0.25 4
3 |Deviator distance-to-Span ratio (S,/L) 0.33-0.67 0.17 3
5 |Prestressing steel ratio (p,) (in %) 0.25-045 0.10 3
6 | Reinforcing steel ratio (p,) (in %) 0.00 - 0.62 0.31 3
Total number of combination 2592

Actual number of cases analyzed 864
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Fig. 1 Model of PC beam used in the parametric evaluation

4. INFLUENCE OF VARIOUS PARAMETERS
4.1 EFFECT ON STRAIN REDUCTION COEFFICIENT Q,

The influence of important parameters on the strain reduction coefficient Q, is illustrated in Fig.
2(a-d). From Fig. 2(a), it can be seen that the span-to-depth ratio (L/d,) greatly influences ,. With
increasing L/d, , the value of Q, reduces drastically in a hyperbolic manner. As such it can be said that
Q, is inversely proportional to L/d,. As seen from Fig. 2(b), €, increases with increasing ratio of
internal bonded tendon (A, ;,/A ), in an almost linear manner. Judging from this it can be said that
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Fig. 2 Influence of various parameters on strain reduction coefficient Q,

Q, is linearly proportional to A, /A, . Fig. 2(c) shows that the value of Q, with deviator distance is
nearly the same for different values of S /L. As such, it can be concluded that the influence of deviator
distance on Q, is not significant. Similarly, the effect of p, and p, were negligible and are not presented
here due to space limitations. As a result, these factors were neglected from the prediction equation of
Q,. From Fig. 2(d) it can be seen that the variation of loading point on €, is not linear. It is observed
that the value of €, for one point loading is considerably smaller than two point loading. This
indicates that the effect of loading point should be considered as a separate issue.

4.2 EFFECT ON DEPTH REDUCTION FACTOR R,

The influence of some parameters on the depth reduction factor R, is illustrated in Fig. 3. It can
be seen that the parameters L/d, and S /L are greatly affect R,. In both cases, the value of R, reduces
with increasing ratio L/d, and s /L, in a nearly linear manner. It can be also noted from Fig. 3(b) that
the reduction factor for one point loading is considerably different from the two point loading.
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Fig. 3 Influence of some parameters on depth reduction factor R,
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5. PROPOSED EQUATION

Using the results of obtained from the parametric evaluation, a multiple linear regression analysis
was carried out considering various combinations of parameters. This analysis was done separately for
the strain reduction coefficient €2, and the depth reduction factor R,. Judging from Figs. 2 and 3, it was
decided to separate the one pomt loading cases and two point loadmg cases. In addition, there were
some cases where the external tendons yielded, which were excluded. The equations obtained for Q,
and R, through regression analysis are expressed as follows:

(a) Strain reduction coefficient €, ;

Q = 221 o0 ( prit ) + 0.04 for one-point loading
(L1 d ps) ps,fot.
(6)
0, = =3 4p9 ( i ) + 0.06 for third-point loading
(L/dp;) ps,tot.
(b) Depth reduction factor R, ;
R, = 1.14- 0.005 ( & ] -0.19 (%) < 1.0 for one-point loading
ps
7
R, = 125 -0.010 (d—L—) -0.38 (%) < 1.0 for two-point loading
ps

By substituting Eqs. 6 and 7 in Eqgs. 4 and 5, the expressmn for f, can be obtained. Considering
the equilibrium of forces at the critical section, the neutral axis depth ¢ can be computed and Eq. 4 will
yield the value for f,. Once f, is known the ultimate flexural strength M, can be calculated as
explained in reference [5]. Fig. 4 illustrates the accuracy of the prediction of Q, and R, using the
proposed Eqs. 6 and 7 against the values obtained by rigorous analysis. From the statistical analysns it
can be seen that the proposed equation predicts €, and R to a very good accuracy. It should be noted
that Eq. 6 is expressed for one-point loading and third-point loading. In the case of uniform loading the
equation for third-point loading can be used, since the moment diagrams of these two loading patterns
are approximately the same. For two-point loading other than third point loading, the coefficients given
in Eq. 6 for one-point and third-point loadings could be linearly interpolated to get the appropriate

value of Q,.

The validity of the proposed equation was compared with the equation proposed by Naaman and
the one adopted by AASHTO (1994). Fig. 5 shows the variation of predicted ultimate tendon stress
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Fig. 4 Comparison of the accuracy of the prediction
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with the analytically obtained one for the range of 16 F % g
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parameters given in Table 1. It can be seen that the Ay =" gqo
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equation proposed in this study gave the best correlation
compared to the others two equations. As such it is
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A parametric evaluation was conducted to study
the influence of various factors that affect the ultimate Fig. 5 Comparison of ultimate tendon stress
tendon stress of beams with external prestressing. A
new design equation was proposed for the prediction of the ultimate flexural strength of externally
prestressed members. The conclusion from this study are as follows.

® The span-to-depth ratio was the most important factor that affect the ultimate tendon stress in the
beams with external or unbonded tendons.

® The ultimate position of the external tendon is greatly influenced by the deviator distance-to-span
ratio, thus affecting the ultimate flexural strength of such beams.

® The proposed equation can be used for member with external as well as combined prestressing.
The prediction based on the new equation gave the best results compared to the other existing
equations.

® ]t is proposed that further investigation should be carried out to study the applicability of the
proposed design equation for continuous beams.
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