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&3 Determination of Buckling Length of Reinforceing Bars Based
on Stability Analysis

Rajesh P. DHAKAL ™ and Koichi MAEKAWA ™

ABSTRACT: Average compressive stress-strain relationship of reinforcement is sensitive to
buckling length. The aim of this study is to propose an analytical method to predict the
buckling length of longitudinal bars restrained by lateral ties inside RC structures. Stability
analysis is conducted giving due consideration to both geometrical and mechanical properties
of the longitudinal and lateral reinforcements. The required tie stiffness is derived from
energy principle and compared with actual stiffness to determine the stable buckling mode.
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1. INTRODUCTION

Reinforcing bars, when subjected to axial compression exhibits large lateral
deformation (hereafter referred to as buckling) especially after the absolute compressive
strain becomes higher than the yielding strain. One of the most important parameters that
govern the stress-strain relationship [1] of reinforcing bars in compression is buckling length
to bar diameter ratio. In the compression tests of bare bar, the buckling length is equal to the
supported length of the test piece. But for the reinforcing bars inside reinforced concrete
members, this definition of buckling length does not apply. Hence, the determination of
length to diameter ratio, in such cases, becomes difficult and requires proper consideration of
interrelated mechanisms between main bar and lateral ties.

Previous researchers [2, 3, 4] have come up with different conclusions regarding the
buckling length, varying from one to several times tie spacing. It is realized that the buckling
length may extend to several times tie spacing depending on the arrangement and strength of
lateral ties. However, if the size and spacing of the lateral ties are designed properly so that
the stiffness of the stirrup is high enough to provide a rigid support to the longitudinal bar, it
is ensured that the main reinforcement buckles between two adjacent stirrups. But, this is not
always the case. Here, an analytical method to determine the buckling length is proposed.

2. ASSUMPTIONS AND GENERAL FLOW OF COMPUTATION

Longitudinal reinforcing bars are simulated as flexural members fixed to the lateral
ties at two extreme ends of buckling length. Moment curvature (M-¢) relationship of elastic
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flexural member is given by M=EIl¢, where EI is the flexural rigidity. Because of its
nonlinear nature, the flexural rigidity of reinforcing bar in post-yielding region is not unique
and the exact value can be obtained through microanalysis. For simplicity, average flexural
rigidity is assumed to be half of the elastic flexural rigidity for normal strength reinforcing
bars. The average flexural rigidity of reinforcing bar is also influenced by its yield strength.
For example, in case of high strength bars, the associated plasticity is comparatively smaller
and the secant stiffness is also higher (figure 1). Consequently, the average flexural rigidity
increases with increase in yield strength and vice versa. Finally, considering the influence of
yield strength as well, the average flexural rigidity is assumed as EI = El/2V(f,/400), where
E;, I and f, (MPa) are Young modulus, moment of inertia and yield strength, respectively.

To define the deformational shape of the longitudinal reinforcement, boundary
conditions ensuring zero lateral displacement and no slope at the end springs, are assumed.
To fulfill these boundary conditions, a cosine curve, normally used for deformation of fixed
end column, is used as shown in figure 1. The lateral ties are simulated by discrete elastic
springs. In reality, the lateral ties show elasto-plastic behavior and after reaching the yield
strain, the stiffness of the tie is reduced nearly to zero. The ties around the middle of the
buckling length are prone to undergo high tensile strain due to large lateral deformation of the
longitudinal bars. To cope with these facts, the springs within the central half of the buckling

length are eliminated from the system, as shown in figure 1, for accurate prediction of
required stiffness of other elastic springs.
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Figure 1. Simulation for stability analysis Figure 2. Flow-chart of entire process

The entire process of buckling length determination is illustrated with a flow-chart in
figure 2. First, the actual tie stiffness effective to each longitudinal reinforcement is
calculated. Next, the minimum spring stiffness required to hold the longitudinal reinforcing
bars in different buckling modes is determined using energy principle, as stated later. For
each buckling mode starting from 1, the required stiffness is compared with effective tie
stiffness to check the stability of the reinforcements in corresponding buckling modes. The
stable buckling mode is the smallest possible mode for which the required spring stiffness is
less than the actual tie stiffness. The product of this stable buckling mode and the tie spacing
gives the buckling length of the main reinforcement for the given arrangement of lateral ties.




3. FORMULATION

The derivation of required spring stiffness for an arbitrary mode (n™ mode) is
explained below. Figure 3 presents the two possible modes of deformation (n and n+1)
considered for the derivation. Here, we have to consider these two modes because we want to
assess the spring stiffness so that the higher mode (n+1) is avoided. The lower modes are not
considered because they are already checked in the previous steps and proved not to exist.
The lateral displacement profiles of the longitudinal reinforcement in these two modes are
also shown in figure 3.

Figure 3. Determination of required spring stiffness for n" buckling mode

The energy corresponding to each buckling mode includes the elastic strain energy of
the reinforcement, energy stored in the elastic springs, and the energy due to shortening of the
reinforcement. The total energy of the system, U, is calculated as the sum of energies
associated to the two buckling modes, U, and U,,;. The energy associated with two
consecutive buckling modes and total energy are given by following equations (egs. 1-3).
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Here, ¢; is the coefficient to incorporate the plasticity of lateral ties. Hence, the value
of ¢; is O for the springs in the central half of the buckling length for representing plasticity
and for the rest, it is 1. Similarly, E is the flexural stiffness of the reinforcement and &, and P
are the critical spring stiffness and the axial load corresponding to the n™ mode, respectively.
Solving these equations by using the pre-described deformational shape, the total energy can
be obtained, as shown in the following equations (egs. 4-7).

U= Uf+ Uk—UP (4)
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Here, Uy, Uy and Up are the flexural strain energy of the reinforcement, energy stored
in the elastic springs and the energy due to the shortening of the reinforcement, respectively.
Similarly, tie spacing is denoted by s. Now, the total energy U is minimized with respect to
each of the maximum amplitudes a, and a,; to obtain the following equations (egs. 8 and 9).
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These two simultaneous equations finally yield the required spring stiffness k, and the
corresponding load P. The required spring stiffness for different buckling modes, calculated
according to the proposed method, is shown in table 1. The equivalent stiffness (k.,),
mentioned in the table, is a dimensionless parameter and multiplying it by ZEls’ gives the
required spring stiffness k,. As expected, the stiffness becomes smaller for higher modes.

TABLE 1. Required spring stiffness for different buckling modes

Mode, n 1 2 3 4 5 6 7 8
keq 0.7500 | 0.1649 | 0.0976 | 0.0448 | 0.0084 | 0.0063 | 0.0037 | 0.0031

4. STIFFNESS OF LATERAL TIES

In order to determine the stable buckling mode and buckling length, the effective
stiffness of the stirrups with given strength and arrangement has to be evaluated in advance
and it should be compared with the calculated required spring stiffness for the corresponding
mode. The buckling tendency of the main reinforcement will cause axial tension in the legs of
a stirrup. Hence, the stirrup resistance against the lateral expansion is believed to be mainly
governed by its axial stiffness. The axial stiffness of each tie leg is E.A,/b, where E;, 4; and b
are elastic modulus, cross-sectional area and the leg-length of transverse reinforcement,
respectively. Assuming the total stiffness of n; tie legs equally contribute to 7, longitudinal
bars that are prone to simultaneous buckling, the restraining stiffness of the tie system
effective against buckling of each longitudinal bar can be calculated using equation 10.
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The values of n; and 7, for some common arrangements of longitudinal and lateral
reinforcements are illustrated in figure 4. It can be observed that this definition can be
consistently applied to any kind of reinforcement arrangements (multi-legged stirrups,
diagonal ties etc.) in rectangular cross section.

n,=2; m;=2 n,=3; n,=2 np, =5; ;;=4 n, =5; n,=4
Figure 4. Effective tie stiffness for some common arrangements.

It is to be noticed that the values of n; and n, depend on the type of loading. The
values shown in figure 4 are for flexural loading, where only the reinforcing bars in one side
are prone to simultaneous buckling at an instant. Nevertheless, in case of axial compression,
all bars have equal strain and bars in both sides of the stirrup legs tend to buckle outside at the
same time. Hence, 7, and n; in each direction should be determined considering the tie-legs
along the direction and longitudinal bars in both sides. Moreover, in case of unsymmetrical
arrangement of reinforcements, the tie stiffness and buckling modes of reinforcing bars in two
directions are different and using the lower stiffness gives slightly conservative prediction.

5. VERIFICATION AND DISCUSSION

As explained earlier, the effective tie stiffness and the required spring stiffness
corresponding to each buckling mode can be determined and they are to be compared with
each other to determine the stable buckling mode. Hereafter, the performance of the proposed
method is experimentally verified. First, an axially loaded compression member tested by the
authors and a laterally loaded flexural column [5] are explained in detail. The details and
results of both specimens are listed in table 2 and also illustrated in figure 5.

TABLE 2. Specimen details

Cylinder | Column
Section | 20*20cm | 2.4*2.4m
Main bar | 6-D13 72-D35
Stirrups | D6@10cm | D19@30cm

Ny .0y 6,2 19,2

b 16cm 220cm
E; 200GPa 200GPa
f, 355MPa 424MPa

¥
ky/n*El/s’ | 1.0135 0.1015
Mode,n |1 3

Figure 5. Buckling modes in experiment

It can be observed that the predicted buckling mode of the compression cylinder is
one and the buckling length observed in experiment is also equal to tie spacing. Similarly, the
reinforcements inside the flexural column were predicted to buckle in the third mode and the




experimental buckling length also seems to be equal to three times tie spacing, showing exact
resemblance with the theoretical prediction. For further verification, the predictions according
to the proposed method are compared with altogether 45 experimental observations. These
experiments include bending tests of beams [3] and columns [5] and compression tests of
prisms [2, 4] reinforced with normal and high strength bars. The comparison shown in figure
6 signifies that the proposed method is in fair agreement with the experimental observations.
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Figure 6. Verification of proposed buckling length prediction method.
6. CONCLUSION

An analytical method to determine buckling length of reinforcing bars inside RC
structures is proposed. Comparison with several experimental observations revealed ample
evidence of the reliability of this method. This method, if combined with simple stress-strain
relationship of bare bar in compression, can be used as a reliable buckling model for
reinforcements inside any RC structures. Moreover, this method can also be used for the
design of lateral ties to resist extensive buckling of main reinforcement.
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