論文 遠心成形した高強度コンクリートの耐硫酸性に関する研究

菅原 高志^{*1}・桝田 佳寛^{*2}・中村 成春^{*3}

要旨:本研究は,遠心成形した高強度コンクリートの耐硫酸性を実験的に検討したものであ る。実験は,水セメント比,硫酸濃度などを種々変化させ,182日間浸漬した。硫酸浸漬の 結果,表面部に石膏皮膜が形成し,一時的に質量と体積が増加するが,その後減少し,低pH ほどその傾向が強く現れた。また,質量変化,体積変化の硫酸濃度,浸漬日数などによる影 響を考慮し,硫酸によるコンクリートの劣化速度を検討した。その結果,水セメント比,硫 酸濃度,セメント水比,浸漬日数などを用いて,質量変化および体積変化の挙動を表すこと ができた。

キーワード:高強度コンクリート,遠心成形,耐硫酸性,硫酸濃度,水セメント比

1. はじめに

遠心成形した高強度コンクリートは、PC 杭と して構造物の基礎に用いられている。腐食性物 質が混在する可能性のある埋立地や温泉地など の酸性土壌では,コンクリートが酸の影響を受 けて劣化することが考えられる。そのため、地 中に埋まってしまう基礎コンクリートの劣化を 把握することは重要であるが、その定量的な評 価は十分なされておらず,劣化速度について不 明な点が多い。特にコンクリートが硫酸に接し た場合は,反応時に生成する石膏皮膜が浸食速 度に影響を与え,複雑な劣化挙動を示すことが 報告されている¹⁾²⁾。本研究は,調合を変化させ た高強度コンクリート供試体を遠心成形して作 製し,異なる濃度の硫酸に浸漬し,質量および 体積の経時変化を実験し、浸漬試験で得られた 結果より、硫酸によるコンクリートの劣化速度 を検討したものである。

2. 硫酸による劣化メカニズムの検討

2.1 硫酸による劣化モデルの概念

セメント・コンクリート供試体を硫酸に浸漬 すると硫酸とセメント・コンクリート中の水酸 化カルシウムの反応によって不溶性の石膏が析

*1 宇都宮大学大学院 工学研究科建設学専攻卒業 (正会員)

*2 宇都宮大学教授 工学部建設学科 工博 (正会員)

*3 宇都宮大学助手 工学部建設学科 工博 (正会員)

出するとともに,酸による石膏やセメント硬化 体組織(CSH)の溶解が生じる。石膏の析出量は, 硫酸から解離した硫酸イオンと水酸化カルシウ ムの溶解で生成したカルシウムイオンが拡散し, 両者が出会ったところで生成するが,本研究で は,見かけ上,石膏中を硫酸と水酸化カルシウ ムが拡散するように扱った。また,コンクリー トを硫酸に浸漬した時の,質量および体積の変 化を図-1 に示す劣化モデルをもとに検討した。

2.2 石膏の析出メカニズム

(1) コンクリートを硫酸に浸漬すると,硫酸 と水酸化カルシウムとが出会ったところで直ち

図 - 1 硫酸による劣化モデルの概念

に反応が起こって石膏が生成され,その生成し た石膏中を硫酸と水酸化カルシウムが各々両方 向から拡散し,石膏中の両者が出会う位置で反 応する³⁾。この反応が生じる位置は,拡散速度 と反応速度との兼ね合いにより確率的に分布す るが,硫酸と水酸化カルシウムとが化学量論的 に釣り合う面で生じると仮定する。水酸化カル シウムおよび硫酸の拡散距離xおよびyは,各々 の界面からこの反応面までの距離とする。

(2) 生成された石膏中の硫酸の拡散は Fick の第一法則に従うと考えると,微小時間 dt にコ ンクリート中へ拡散してくる硫酸の量 dH は, 石膏表面における硫酸濃度をH,拡散距離をy, 表面積をSとすると式(1)のように表すことがで きる。

$$dH = S \cdot D_{H} \cdot \frac{H}{y} \cdot dt$$
 (1)

ここで, D_H:石膏中の硫酸の拡散係数

また ,この硫酸によって厚さ dy の石膏が生成さ れるとすると , 拡散してきた硫酸 dH は式(2)で 表すことができる。

$$dH=S\cdot dy$$
 (2)

式(1)と式(2)を等置して y について解くと,式(3)が得られる。

$$y = \sqrt{2D_H} \sqrt{H} \sqrt{t} \tag{3}$$

(3) 同様に,水酸化カルシウムの拡散距離を x,石膏表面における水酸化カルシウム濃度をC とすると式(4)が得られる。

$$\mathbf{x} = \sqrt{2Dc} \ \sqrt{C} \ \sqrt{t} \tag{4}$$

ここで, D_Cは, 石膏中の水酸化カルシウムの 拡散係数

(4) 石膏の析出厚さは式(3)と式(4)より,以下の式(5)となる。

$$\mathbf{x} + \mathbf{y} = \left(\sqrt{2D_H}\sqrt{H} + \sqrt{2D_C}\sqrt{C}\right)\sqrt{t} \qquad (5)$$

ここで, D_H , D_C は, 生成された石膏の濃度の 関数であり, これを元のコンクリートの水セメ ント比の関数で表せるとすると, $Y_1 = x + y$, f(w/c) = $\sqrt{2Dc}$, = $\sqrt{2D_H} / \sqrt{2Dc}$ とおくと式 (5)は以下のように表せる。

$$Y1=f(w/c) \cdot (\sqrt{H} + \sqrt{C})\sqrt{t}$$
(6)

ここで , さらに a= f(w/c)・($\sqrt{H} + \sqrt{C}$)

とおくと,式(6)は

$$Y_1 = a \sqrt{t} \tag{7}$$

と表せる。

2.3 酸による溶解メカニズム

硫酸による溶解は ,H₂SO₄ と CSH ゲル(nCaO, SiO₂, mH₂O)および CaSO₄ が順次反応して進行 すると考えられる。硫酸浸漬による質量と体積 の変化量 Y は,硫酸濃度と水セメント比に大き く左右されると考えられ,この関係を示すと

$$Y_2 = -bt \tag{8}$$

と考えられ,bは次式で表される。 b= (C/W) + (1/10^{pH}) + (0)

2.4 硫酸による劣化メカニズム

式(7)と式(8)を重ね合わせれば,硫酸浸漬による経時変化量 Y(=Y₁+Y₂)を表すことができると考えられ,次式のようになる。

$$Y = a\sqrt{t} - bt \tag{10}$$

3. 実験概要

3.1 使用材料及び調合条件

表 - 1 に実験の要因と水準を ,表 - 2 に使用材 料を ,表 - 3 に調合条件とフレッシュ性状を示 す。浸漬液は 5 種類の異なる濃度の硫酸を使用

表 - 1 要因と水準

要因	水準		
水セメント比 (%)	25,30,35		
浸漬試験体 (cm)	遠心体 (20×30,肉厚4)		
浸漬試薬	硫酸		
硫酸濃度 (pH)	1.0, 1.5, 2.0, 2.5, 3.0		
濃度調整浸漬日数	0,3,7,14,28,42,56,70,91 105,119,133,147,161,182		
測定浸漬日数	0,3,7,14,28,56, 91,119,147,182		
浸漬中の測定項目	質量、体積、浸漬試薬pH		

した。硫酸濃度は,2週間ごとに調整し,4週で 浸漬液を全交換した。

3.2 使用試験体

図 - 2 に試験体の概要を示す。試験体は遠心 成形したものを4分の1に切断して使用した。 劣化状況は、側面からの影響のみを考えるため, すべての試験体の上・下面及び切断面にエポキ シ樹脂を塗布した。また,外側にエポキシ樹脂 を塗布した"内側暴露試験体"と内側を塗布し た"外側暴露試験体"に分け,内側と外側の硫 酸による劣化の違いを検討した。

3.3 実験結果

3.3.1 質量変化

質量変化は,測定日に測定した値と浸漬初期 値との差を表面積で除したものとした。図-3 に浸漬日数と質量変化の関係を示す。浸漬開始 後増加し,その後減少していく傾向がみられ, pH が低く,水セメント比が高い方が大きな動 きのある変化を見せている。また,内側を暴露 した試験体の方が,変化量が大きいことがわか る。ここで,浸漬実測結果は,式(10)の関係に 従うものとし,式(10)の係数 a と b を回帰分析 した。特に,この回帰で得られた式(10)の係数 a と b を a'と b'で表すことにする。表 - 4 に質量 変化の係数 a'と b'の回帰分析結果を示す。また, 図 - 3 中に回帰分析結果を示す。係数を見ると, 浸漬結果と同様に低 pH 高水セメント比で値が 大きくなる傾向がみられた。内側と外側の両面 を暴露した試験体は,内側暴露試験体と外側暴 露試験体の間にあるが,内側暴露の方に寄って おり,変化挙動が直線的ではなく,内側の方が 硫酸浸食の影響に大きく与えていることがわか る。

表 - 2 使用材料

セメント	普通ポルトランドセメント
細骨材	鬼怒川産川砂 表乾密度2.54(g/cm ³) 吸水率2.63(%) 粗粒率3.07
粗骨材	鬼怒川産川砂利 表乾密度2.57(g/cm ³) 吸水率1.86(%) 粗粒率7.04
混和材	エトリンガイト系高強度用混和材
混和剤	ナフタリン系高性能減水剤

図-2 供試体形状

W/C	s/a		単位	量 (kg/m ³)		混和剤添加率	スランプ	空気量
(%)	(%)	W	С	S	G	混和材	(C×%)	(cm)	(%)
25	37.2	138	540	597	1100	54	2.0	3.2 ± 0.3	2.1±1.0
30	38.0	146	483	622	1100	48	1.1	2.9 ± 1.0	1.7±1.0
35	38.1	157	446	628	1100	45	0.7	4.4 ± 1.3	1.5 ± 0.4

表-3 調合条件とフレッシュ性状

表 - 4 質量変化の係数 a'および b'の回帰分析結果

					p	эΗ			
W/C	形状	1.	0	1.	5	2.	0	3.	0
		a'	b'	a'	b'	a'	b'	a'	b'
25		1.41974	0.01627	0.53726	0.00704	0.41962	0.00475	0.29796	0.00204
30	外側暴露	1.78633	0.01781	0.89142	0.00788	0.68608	0.00623	0.43743	0.00246
35		1.98358	0.02147	1.23468	0.01198	0.91438	0.00729	0.50083	0.00273
25		2.18089	0.02105	1.60181	0.01673	0.92914	0.00879	0.67648	0.00472
30	内側暴露	2.38492	0.02302	1.70252	0.01610	1.20161	0.01038	1.01340	0.00600
35		2.89557	0.02545	1.94848	0.01878	1.67191	0.01190	1.30739	0.00809
25		2.06458	0.02253	1.24786	0.01009	0.75823	0.00724	0.47407	0.00329
30	両面暴露	2.23672	0.02416	1.49562	0.01298	0.97609	0.00830	0.69792	0.00411
35		2.65645	0.02358	1.93997	0.01732	1.37673	0.01133	0.79590	0.00469

図 - 3 浸漬日数と表面積当りの質量変化

			рп							
W/C	W/C 形状	1.0		1.5		2.0		3.0		
		a'	b'	a'	b'	a'	b'	a'	b'	
25		0.007517	0.000076	0.002995	0.000026	0.001174	0.000012	0.000733	0.000004	
30	外側暴露	0.009176	0.000087	0.004335	0.000031	0.001944	0.000019	0.001069	0.00006	
35		0.012213	0.000100	0.007165	0.000055	0.002123	0.000017	0.001028	0.000005	
25		0.012590	0.000102	0.004390	0.000042	0.002410	0.000021	0.001402	0.000009	
30	内側暴露	0.016243	0.000131	0.007390	0.000060	0.002937	0.000024	0.001735	0.000009	
35		0.019511	0.000145	0.011022	0.000081	0.003959	0.000034	0.002506	0.000013	
25		0.01147	0.00011	0.00791	0.00007	0.00286	0.00003	0.00155	0.00001	
30	両面暴露	0.01669	0.00015	0.00869	0.00007	0.00574	0.00005	0.00218	0.00001	
35		0.02169	0.00017	0.00874	0.00008	0.00606	0.00005	0.00273	0.00001	

表 - 5 体	ム積変化の係数	a'および b'	の回帰分析結果
---------	---------	----------	---------

3.3.2 体積変化

空中質量と水中質量の差を体積とした。図 - 4 に浸漬日数と体積変化の関係を示す。体積変化 も質量変化と同様の傾向がみられるが、質量変 化より遅い 56 日目から減少に転じている。これ は,硫酸とコンクリートの反応で生成される石 膏と溶解していくコンクリートの比重の違いに よるものだと考えられる。体積変化についても 質量変化と同様に係数 a'および b'を求めた。表 -5 に体積変化の係数 a'と b'の回帰分析結果を 示す。また,図-4 中に回帰分析結果を示す。 体積変化の係数も質量変化と同様に浸漬試験の 傾向と同じような分布になった。

4. 解析および考察

4.1 質量および体積変化の係数 a"

式(6)において関数 f(w/c)および定数 が求ま れば,式(7)の係数 a が求まる。関数 f(w/c)につ

図 - 4 浸漬日数と表面積当りの体積変化

いては,一次式 f(w/c)= (w/c) + で近似するこ ととし,定数 , を求めるために,実験 で得られた各水セメント比,硫酸濃度,単位セ メント量を式(6)に代入し,逆解析を行った。こ の逆解析により得られた係数 a を a"と表す。た だし硫酸濃度は pH で表し,H=(10^{-pH})とし,C はセメントの絶対容積(%)とした。逆解析で得ら れた質量変化の係数 a"の定数 , , を表 -6 に,体積変化の係数 a"の定数 , , を表 -7 に示す。

4.2 質量変化および体積変化の係数 b"

式(9)における b の値を計算するために,実験 で得られたセメント水比と硫酸濃度を用いて, 定数 , を求める。表 - 8,表 - 9にその 結果を示す。これらの逆解析で得られた内側暴 露試験体の質量変化の係数 a"と b"を式(10)に 代入して得られる質量変化の計算例と実測結果 を回帰したものとの比較を図 - 5に示す。式(10)

表-6 質量変化の定数 , ,

a''			
内側暴露	0.00862	-0.04695	24.36392
外側暴露	0.00272	-0.02549	80.66824

表 - 7 体積変化の定数 , ,

a''			
内側暴露	0.000103	-0.001483	0.000109
外側暴露	0.000062	-0.000913	0.000101

表-8 質量変化の定数 ,

b''	$(\times 10^2)$	$(\times 10^2)$	$(\times 10^2)$
内側暴露	-0.0021	16.5978	1.5313
外側暴露	-0.0021	15.8425	1.0305

表 - 9 体積変化の定数 ,

b''	$(\times 10^4)$	$(\times 10^4)$	$(\times 10^4)$
内側暴露	-0.0016	11.5448	0.6935
外側暴露	-0.0009	8.3037	0.3704

図-5 内側暴露試験体の経時変化の比較

で計算した質量の経時変化と実測値を当てはめ た経時変化とでは、ほぼ一致することが分かる。 また、体積変化についても同様な傾向となった。 このことから、遠心成形した高強度コンクリー ト供試体を硫酸に浸漬した場合の質量および体 積の変化挙動は、硫酸濃度、水セメント比などの 要因を用いて式(10)のように表すことが可能で あることがわかった。

5. まとめ

- (1) 硫酸とセメント・コンクリート中の水酸化 カルシウムの反応によって生じる石膏の 量は,硫酸濃度,水セメント比,単位セメ ント量を用いて式(7)の形で表すことがで きる。
- (2) 硫酸による CSH ゲルと石膏の溶解は,セ メント水比,硫酸濃度を用いて式(8)の形で 表すことができる。

(3) コンクリートを硫酸に浸漬した場合の質量および体積の経時変化は,式(10)の形で表すことができる。

参考文献

- (前藤直,桝田佳寛,中村成春:遠心成形した高強度コンクリートの耐久性評価,セメント・コンクリート論文集,No.53, pp.920-927,1999.12
- 蔵重勲,魚本健人:コンクリート中の水和 物および微細構造が耐硫酸性に及ぼす影響, コンクリート工学年次論文集,Vol.23,No.2, pp.469-474,2001
- 杉山央,桝田佳寛:非定常拡散に基づくセメントの水和反応・組織形成モデル,セメント・コンクリート論文集,No.53,pp.50-57, 1999