論文 コンクリート中の物質移動と鉄筋の腐食に関する数値解析

小林 悟志^{*1}·下村 匠^{*2}

要旨:水溶液中における鋼材の腐食モデルをコンクリート中の鉄筋に適用できるように修正 を加え、コンクリート中の水分、塩化物イオン、酸素の移動モデルと組み合わせることによ り、コンクリート中の鉄筋の腐食を数値計算により予測する手法を構築した。コンクリート の品質と曲げひび割れ幅の影響を考慮して、鉄筋軸方向に沿った腐食量の分布の経時変化を 解析できることを示した。

キーワード:鋼材腐食,物質移動,ひび割れ幅,乾湿繰返し

1. はじめに

塩害によるコンクリート中の鉄筋の腐食に関 して多くの研究がなされ,貴重な研究成果が蓄 積されている¹⁾。土木学会コンクリート標準示 方書[施工編]一耐久性照査型-²⁾では,鋼材 腐食に関する定量的な照査が導入された。示方 書では,かぶりコンクリート中の塩化物イオン の移動を一次元移動モデルにより予測し,鋼材 位置における塩化物イオン濃度が,鋼材腐食発 生限界値に達するかどうかを照査する方法が採 用されている。この方法は,簡便かつ物理的意 味が明瞭であるので,実用性に優れるものであ る。一方,将来より優れた照査法を導入するた めには,多少複雑であっても,条件を詳細に考 慮できる精度の高い予測手法の開発も続けなけ ればならない。

本研究は、かぶりコンクリート中の鋼材腐食 促進物質(水分,塩化物イオン,酸素)の移動 と鋼材の腐食進行予測に関する数値計算法の開 発に取り組んだものである。コンクリートの品 質の影響を合理的に考慮するために細孔構造に 立脚した物質移動モデルを用いたこと、曲げひ び割れの影響を考慮するためにかぶりコンクリ ート中の物質移動を二次元解析とし、鉄筋の軸 方向に沿った腐食分布を計算可能としたこと、 電気化学的機構に注意を払い腐食反応モデルを 定式化したことが特徴である。

2. コンクリート中の物質移動解析

2.1 コンクリートの細孔構造

コンクリート中の水分,塩化物イオン,酸素 の移動は、コンクリートの細孔構造に立脚した モデルを用いて評価する³⁾⁴⁾。各種物質が共通に 存在・移動する場であるコンクリートの細孔構 造を、以下の材料関数により表現する。

$$V(r) = V_o \left\{ 1 - \exp\left(-Br^C\right) \right\}$$
(1)

ここに, *V*(*r*): コンクリート単位体積中における細孔半径が *r* 以下の細孔容積, *V*_o: コンクリートの空隙率, *r*: 細孔半径(m), *B*,*C*: 細孔容積分布の特徴を表す材料パラメータである。

以下に述べるコンクリート中の水分,塩化物 イオン,酸素の移動流束はすべて,この細孔構 造モデルに基づき定式化されている。各種物質 の移動に関する材料パラメータは,式(1)で表さ れる細孔構造と関係づけられている。

2.2 水分の移動

水分の移動流束として,分子拡散による水蒸 気の拡散移動流束 J_v,不飽和領域における熱力 学的圧力低下の勾配を駆動力とした液状水の移 動流束 J_iに加えて,コンクリート表面が直接液 状水に接した湿潤時に,表面張力により流入す る液状水の流束(吸水) J_{pen}を考慮している。

$$\frac{\partial w_l}{\partial t} = -div(J_v + J_l + J_{pen}) \tag{2}$$

*1 長岡技術科学大学大学院 工学研究科建設工学専攻 (正会員)

*2 長岡技術科学大学助教授 工学部環境・建設系 工博 (正会員)

ここに, *w_l*: コンクリート単位体積中の水分量 (kg/m³)である。各流束は移動メカニズムに基づ き定式化³⁾⁴⁾されているが本論文では割愛する。

曲げひび割れの影響を検討するため,水分を はじめコンクリート中の物質移動は,二次元解 析により評価した。

2.3 塩化物イオンの移動

コンクリート中の塩分は既往の多くの研究と 同様に、液状水中にイオンの形態で存在する自 由塩化物とセメント硬化体に固定される塩化物 に分類する。塩分の移動流束は、液状水中にお ける塩化物イオンの拡散移動流束 *J*_{difCl} と、液状 水の移動にともなって輸送されるバルク移動流 束 *J*_{bulkCl} を考える。

$$\frac{\partial C_{total}}{\partial t} = -div(J_{bulkCl} + J_{difCl})$$
(3)

ここに, *C_{total}*: コンクリート単位体積中の全塩 化物量(kg/m³)である。コンクリート中の塩化物 イオン濃度と全塩化物量との関係は,丸屋⁵⁾が 実験的に導出した平衡則を用いて表現する。

2.4 酸素の移動

コンクリート細孔中の気相部分に存在する気 体酸素と液相中に存在する溶存酸素を考慮する。 それぞれの濃度勾配による拡散移動を考える。

$$\frac{\partial C_o}{\partial t} = -div(J_{ov} + J_{ol}) \tag{4}$$

ここに、 $C_o: 酸素濃度(kg/m³), J_{ov}: 気体酸素の$ $拡散流束(kg/m²/s), <math>J_{ol}: 溶存酸素の拡散流束$ (kg/m²/s)である。気体酸素と溶存酸素は、局所的には常にヘンリーの法則に基づいた平衡状態にあるとする。

コンクリート中の酸素の移動は、定常状態を 仮定した。コンクリート表面における酸素濃度 は環境条件より与え、鉄筋位置では腐食反応に 全て消費されるとした¹⁾。この条件のもとで得 られる酸素分布の定常解より、鉄筋に供給され る酸素量を求め、腐食反応速度の計算に用いた。

2.5 ひび割れ面での境界条件

コンクリート表面が大気に接する環境条件の 場合,水分移動の境界条件として,コンクリー トの表面近傍に湿度勾配を持った境界層を考える。ひび割れ内では、一般の空間に比べ空気の 循環が行われにくいことから、ひび割れ面では 境界層の厚さ *h_{cr}*を式(5)で表すこととした。

$$h_{cr} = \frac{a}{w}x + h \tag{5}$$

ここに、 h_{cr} : ひび割れ面での境界層厚さ(m), h: 一般表面における境界層厚さ(m), w: ひび割れ 幅(m), x: コンクリート表面からの位置(m), a: 実験定数である。すなわち、ひび割れ幅が小さ いほど、またひび割れの深い部分ほど、乾燥し にくくなると仮定した。定数aの値は、パラメ ータスタディの結果 5×10^{-5} (m)と決定した。

乾湿繰返しの解析を行う場合,湿潤過程では ひび割れ内が液状水で満たされると仮定した。

3. 鋼材の腐食反応モデル

3.1 水溶液中の鋼材の腐食

コンクリート中の鉄筋の腐食モデルは,水溶 液中における腐食を出発点として構築した。ま ず,基本となる水溶液中における鉄の腐食反応 について考える。周知のように,鉄の腐食反応 は鉄の溶出反応(アノード反応)と酸素による 還元反応(カソード反応)から成る。

$$2Fe \rightarrow 2Fe^{2+} + 4e^{-}$$

$$O_2 + 2H_2O + 4e^{-} \rightarrow 4OH^{-}$$
(6)

実際には溶出した鉄イオンが酸素,水酸化物 イオン等と反応し複雑に腐食生成物を形成する が,ここでは鉄の溶出速度(腐食速度)を求め 評価することにする。

アルカリ性環境では,鉄は表面に不動態皮膜 を形成し腐食が進行しにくくなる。pHの低下や 塩化物イオンの存在により,皮膜が破壊され腐 食が進行する。皮膜を破壊する塩化物イオン濃 度とpHの関係は,式(7)で表すことにした⁶。

$$E_{pit} = -0.015 - 0.31 \log(\frac{[Cl^{-}]}{[OH^{-}]})$$
(7)

ここに, *E_{pit}*:不動態皮膜破壊電位(V.SCE), [*CI*]:塩化物イオン濃度(mol/*l*),[*OH*]:水酸化 物イオン濃度(mol/l)である。

不動態皮膜を形成している状態では鉄はある 一定の電流値を保ち,電位が上がっても電流が 上がらず腐食速度も小さい値を保ったままにな るが,塩化物イオンが堆積し破壊電位が低下す ることで腐食が開始する(図-1)。

以上より、アルカリ性水溶液中におかれた鉄 の腐食速度を計算することができる。すなわち、 Tafel の式(8)(9)で表される直線の交点の電流 密度として腐食電流密度 *i*_{corr}(A/m²)を算出し,式 (10)により腐食速度を求める。

$$E_{a} = E_{a0} + \beta_{a} \log_{10} \frac{i_{a}}{i_{a0}}$$
(8)

$$E_{c} = E_{c0} + \beta_{c} \log_{10} \frac{i_{c}}{i_{c0}}$$
(9)

$$W[Fe] = [Fe] \cdot \frac{i_{corr}}{2F} \tag{10}$$

ここに, E_a : アノード電位(V), E_{a0} : アノード の単極電位(V), β_a : アノードの Tafel 勾配 (V/decade), i_a : アノードの電流密度(A/m²), i_{a0} : アノードの交換電流密度(A/m²), E_c : カソード 電位(V), E_{c0} : カソードの単極電位(V), β_c : カ ソードの Tafel 勾配(V/decade), i_a : カソードの 電流密度(A/m²), i_{a0} : カソードの交換電流密度 (A/m²), W[Fe]: 鉄の腐食速度(kg/m²/s), [Fe]: 鉄の原子量(kg/mol), i_{corr} : 腐食電流密度(A/m²), F: ファラデー定数(96480C/mol)である。

3.2 コンクリート中の鉄筋腐食

水溶液中での鉄の腐食モデルをそのままコン クリート中の鉄筋腐食に適用するのは適切では ない⁷⁾。いくつかの修正を加え、コンクリート 中の鉄筋腐食に適用できるようにする。

まず,腐食反応物質である水の量的な側面に ついては,溶液中にある状態と同じと考えるこ とにした。実際に腐食反応に使用される水は微 量であること,相対湿度が0でない限りコンク リート細孔中には微視的には常に水が存在する ことから,鉄筋の周辺には常に水が存在すると みなしてよいと考えたためである。

なお、現段階では腐食の形態としてアノード

とカソードが均質に分布するミクロセル腐食の みを考えているので、コンクリートの電気抵抗 値は考慮されない。したがって、コンクリート の含水量により電気抵抗値が変化し、腐食速度 が変化する現象は表現されない。

コンクリート中の細孔溶液の pH 値は, 飽和 水酸化カルシウム溶液の pH 値(20℃, pH12.67 ~12.72)を参考に, 12.5 とした。

また,セメントペースト上澄み液 (pH 約 12.65) は,水酸化カルシウム飽和溶液 (pH 約 12.70) と pH が同程度であるにも関わらず,溶 液中の鉄筋の腐食速度が約 1/5 となる実験結果 が報告されている⁸⁾。本研究では,この実験結 果は看過し難いと考え,水溶液中を想定して算 定した鉄筋の腐食速度に実験定数 1/5 を乗じて, コンクリート中の鉄筋の腐食速度とすることに する。なお枝広らは,この原因としてセメント ペースト中に含まれる水酸化アルカリによる不 動態化の影響を指摘している⁸⁾。

4. 実験結果と解析結果の比較

4.1 一面暴露試験

まず,一面暴露の場合について検討する。検 証には,笹渕らの実験結果⁹⁾を用いる。コンク リートの配合を表-1 に示す。練混ぜ時に,3 段階の量の塩分が混入されている。供試体は, 一面暴露となるように他の面をコーティングし, 塩分が飛来しない環境に9年間暴露された。

暴露9年目における鉄筋腐食量の実験結果と

解析結果を,水セメント比 50%,65%のシリー ズについてそれぞれ図-2,図-3に示す。解析 に必要な種々の材料パラメータの値は,試行錯 誤により決定した。主要なパラメータである細 孔構造を表すパラメータの値を図中に示した。 同一配合のシリーズには同じ値を用いている。 一面暴露試験であるので,物質移動は一次元解 析により評価した。環境条件は一定とした。

表-1 実験に使用したコンクリート⁹⁾

水セメント比	混入塩化物量	単位量(kg/m ³)	
(%)	(kg/m ³)	水	セメント
50	0.75		
	2.25		370
	3.75	105	
65	0.85	100	
	2.55		285
	4.24		

実験結果では,初期混入塩分量が増えるにし たがって腐食量が大きくなっている。この実験 では,腐食量に及ぼす初期混入塩分量の影響が 大きく,かぶり厚さの影響は小さい。解析結果 においてもこれらの傾向が表現されている。

4.2 塩分飛来環境下における暴露試験

次に,著者らが行った暴露試験の結果を用い て検討する。供試体を図-4 に,実験に使用し たコンクリートを表-2 に示す。最長暴露期間 は9年間で,設置環境は海岸から数十メートル の距離の屋外である。供試体は全面を大気に曝 している。供試体は多数暴露し,実験期間中の 適当な時点で,順次腐食量を測定した。

表-2 実験に使用したコンクリート

水セメント比	混入塩化物量	単位量(kg/m ³)	
(%)	(kg/m^3)	水	セメント
63	0	210	333
	6.51		

本シリーズでは,かぶり面と鉄筋軸方向の端 面からの物質の流出入を考慮する二次元解析を 行った。境界における塩化物イオンの移動流束 は,飛来塩分の影響を考慮して算定した。

図-5 に初期混入塩分がある供試体の,暴露時間と腐食量の関係の実験結果と解析結果を示す。初期混入塩分がない場合は,9 年間では,実験,解析ともに腐食が生じない結果となったため図示していない。

解析結果によると、塩分が混入されている供 試体では暴露初期から腐食が開始し、時間の経 過にしたがってほぼ線形に腐食量が増加した。 実験値は、ばらつきが見られるものの、直線よ りもむしろ下に凸の曲線状に腐食量が増加して いる傾向が認められる。実験では,4,5 年経過し た時点で,いくつかの供試体に腐食ひび割れが 発生していた。このことが指数関数的に腐食を 増加させた一因であると考えられる。

なお、本シリーズでは、比較のために物質移 動をかぶり面からの一次元解析で評価した例も 検討した。その結果、塩分を混入している供試 体の場合でも、二次元解析の結果とほとんど変 わらなかった。つまり、外部から飛来する塩分 が腐食に及ぼす影響を検討するには、本シリー ズの条件は不十分であり、より長い暴露期間か、 より厳しい環境条件の実験が必要である。

5. 数値シミュレーションによる検討

5.1 コンクリートの品質の影響

水セメント比が低く組織が緻密なコンクリー トは、物質移動抵抗性が高いため内部鉄筋を腐 食促進物質から保護する効果が高い。一方、コ ンクリートにひび割れが存在すると、ひび割れ を介して、鉄筋への腐食促進物質の到達が容易 となる。このように、コンクリートの品質とひ び割れ幅は、ともに内部鉄筋の腐食の影響要因 である。特に、使用状態で曲げひび割れの発生 を許容する鉄筋コンクリート構造の場合、コン クリートの品質と曲げひび割れ幅が内部鋼材の 腐食に及ぼす影響を統一的に把握することは、 材料構造設計上重要な意味を持つ。

図-0 鉄励軸方向の腐良重方面に及は9 水セメント比の影響

本研究で開発した解析手法は,両者が鉄筋の 腐食に及ぼす影響を数値実験により検討するの に有効であると考えられる。まず,コンクリー トの品質の影響について検討した。

解析対象供試体は、かぶり厚さ 50mm, ひび 割れ幅 0.2mm, ひび割れ間隔 200mm とした。 環境条件は,温度 20℃,相対湿度 75%,外部か ら塩分が飛来する環境とした。水セメント比 30%,50%,70%のケースを解析した。著者らの 既往の研究に基づき,配合に応じて細孔構造と 物質移動に関する各種材料パラメータの値を定 めた¹⁰⁾。なお,モデル化の仮定より,本研究で 行っている解析では,腐食形態として曲げひび 割れに起因したマクロセル腐食は考慮されない。

暴露20年時点における腐食状況を図-6に示 す。横軸は鉄筋軸に沿ったひび割れからの距離 を表し、左端がひび割れ面、右端がひび割れ間 の中心である。水セメント比が高いケースは、 腐食量の平均値が大きく、また鉄筋に沿った腐 食量の分布が平坦であるのに対し、水セメント 比が低いケースは腐食量の分布の勾配が急にな っている。つまり、組織が緻密なコンクリート ほど、ひび割れの存在が鉄筋の腐食に及ぼす影 響が大きい。この結果は、高品質なコンクリー トほどひび割れ制御が工学的に意味を持つこと を示唆している。

曲げひび割れ幅の影響

5.2 曲げひび割れ幅の影響

続いて、曲げひび割れ幅が鉄筋の腐食に及ぼ す影響について検討した。解析対象供試体は前 節と同じである。環境条件は、ひび割れの影響 が顕著に現れるよう、乾湿繰返し環境とした。 乾燥日数 29.75 日、湿潤日数 0.25 日の繰返しと し、湿潤時には海水が接するとした。水セメン ト比を 50%とし、曲げひび割れ幅が 0.1, 0.2, 1.0, 2.0mmのケースについて計算を行った。

暴露10年時点における腐食状況を図-7に示 す。図-6 と同様に,横軸はひび割れからの距 離を表す。ひび割れ幅の大きい方が全体的に腐 食が進行し,その傾向はひび割れ位置に近いほ ど顕著となる妥当な解析結果を得た。

6. まとめ

本研究の内容をまとめると以下のようになる。

- (1) コンクリート中の物質移動モデルと腐食モデルを組み合わせて、コンクリート中の鉄筋腐食を予測する数値解析法を構築した。
- (2)暴露実験の結果と比較した結果,提案手法 は初期混入塩分がある供試体の腐食量を予 測できることを確認した。しかし,用いた実 験データでは,飛来塩分による腐食の予測精 度を検証できなかった。
- (3) 提案手法を用いて,鉄筋軸に沿った腐食分 布に及ぼすコンクリートの品質と曲げひび

割れ幅の影響を解析した結果,妥当と判断で きる解析結果を得ることができた。

参考文献

- 日本コンクリート工学協会:コンクリート 構造物の補修工法研究委員会報告書(Ⅲ), 1996.10
- 2) 土木学会:平成11年版コンクリート標準示 方書 [施工編] 一耐久性照査型-,2001.1
- T.Shimomura and K.Maruyama: Service Life Prediction of Concrete Structures Subjected to Chloride Attack by Numerical Simulation, RILEM Proceedings PRO 16, pp.25-34, Oct. 2000
- 4) 桜井哲哉ほか:曲げひび割れを有するかぶ りコンクリート中の乾湿繰り返し水分移動 現象の解析,土木学会第56回年次学術講演 会第5部門, pp.568-569, 2001.10
- 5) 丸屋 剛:コンクリート中の塩化物イオンの移動に関する解析手法の構築,東京大学 学位論文,1995.9
- H.E.H.Bird, B.R.Pearson and P.A.Brook: The Breakdown of Passive Films on Iron, Corrosion Science, Vol.28, No.1, pp.81-86, 1988
- 7) 大野康司,水流 徹,春山志郎:コンクリート中における鉄の腐食速度,防食技術,
 29,pp337-342,1980
- 8) 枝広英俊,依田彰彦:促進試験と屋外自然 暴露によるコンクリート中の各種鉄筋の腐 食性状,コンクリート工学年次論文報告集, Vol.14, No1, pp.757-762, 1992.6
- 9) 笹渕優樹, 舛田佳寛, 中村成春:塩化物を 含んだコンクリート中の鉄筋腐食速度に関 する暴露試験,コンクリート工学年次論文 報告集, Vol.20, No.1, pp.317-322, 1998.6
- 10) 下村 匠,福留和人,前川宏一:微視的機 構モデルによるコンクリートの乾燥収縮挙 動の解析,土木学会論文集,No.514/V-47, pp.41-53,1995.5