論文 センタースパン 600mクラスの RC アーチ橋の実現可能性について

谷口 勝彦^{*1}・田邉 忠顕^{*2}

要旨:本研究では,コンクリートアーチ橋のさらなる長大化を想定し,長大化に伴う問題 点を明確にすることを目的としている.材料的非線形性および幾何学的非線形性を考慮に 入れた 3 次元 12 自由度はり要素による地震応答解析を行い,実存する最長スパンを大き く超える 600m スパン RC アーチ橋の実現可能性について,数値解析的に検討した.さら に接線剛性マトリクスの固有値解析を通して,構造不安定問題に対する検討を行った. キーワード:長大スパンコンクリートアーチ橋,固有値解析,分岐点

1. はじめに

コンクリートアーチ橋は,アーチ構造の力学 的特性と, 圧縮に強いコンクリートの材料特性 が効果的に組み合わされた非常に合理的な構造 である.優れた景観美を有すること,さらに設 計施工技術の発達により,近年,大規模なコン クリートアーチ橋が盛んに建造されている.10 年前には数橋しかなかったスパン 100m を超え るコンクリートアーチ橋が,現在では約3倍に なろうとしており,材料および設計施工技術の 発展を考えると,今後はさらなる長大化が予想 される.一方,耐震設計との関連からみれば, 長大アーチ橋が大地震の際にどのような挙動を 示すのか必ずしも明確でないことから,長大ア ーチ橋の耐震設計は今後の大きな課題の一つに もなっている.本研究では上記の問題に対処す るため,材料的非線形性および幾何学的非線形 性を考慮に入れた3次元12自由度はり要素によ る地震応答解析を行い,実存する最長スパンを 大きく超える 600m スパンコンクリートアーチ 橋の実現可能性について、数値解析的に検討し た.さらに接線剛性マトリクスの固有値解析を 通して,構造不安定問題に対する検討を行い, 長大アーチ橋の安定性を照査した.

2. 解析概要

2.1 解析理論

従来,はり理論を用いた数値解析は,微小変 形理論に基づき,せん断変形が無視されるのが ほとんどであったが,本研究で解析対象とする 長スパン構造では材料的非線形性はもちろん, 幾何学的非線形要因を慎重かつできるだけ正確 に考慮する必要がある.そこで,せん断変形を 考慮した3次元12自由度はり要素の非線形有限 変形理論に基づく解析手法を用いた¹⁾.

はり要素の仮想仕事方程式より,本研究で用 いる剛性方程式は次式で与えられる.

 $\left(\left[K\right]+\left[K_{g}\right]\right)\left\{\delta l\right\}=\left\{\delta F\right\}+\left\{\delta F_{r}\right\}$ (1)

ここで、 $\{\delta F_r\}$ は増分荷重を与える以前の状態に おける釣合方程式が完全に満たされないために 生じる不平衡力ベクトルである.また、[K]は 構造物の微小変位剛性マトリクス、 $[K_g]$ は幾何 剛性マトリクスであり、 $([K]+[K_g])$ により、剛 性マトリクスが得られる.

長大コンクリートアーチ橋は構造形状上の特 徴から,構造全体としての座屈照査が重要とさ れている.本研究では,固有値解析を通して構 造不安定問題の検討を行った.構造物の非線形 挙動のうち,ポストピーク領域は構造物が不安

- *1 名古屋大学大学院 工学研究科土木工学専攻 (正会員)
- *2 名古屋大学大学院教授 工学研究科土木工学専攻 工博 (正会員)

定になり,安定性が失われる領域である.この 安定性が失われる構造特異点での性質として最 大荷重点(limit point)および分岐点(bifurcation point)の2つが挙げられる.limit pointの典型的 な例としては,構造物に荷重を作用させた場合 の荷重 - 変位曲線で,荷重低下が生じる場合の 最大荷重点であり、荷重が最大荷重に達した後, 減少しながら、しかも変形が増大する不安定現 象である.また,分岐点は固有ベクトルと荷重 ベクトルが直交する関係にある点であり, fundamental path (基本的な変形経路)と異なる bifurcation path (分岐経路)の発端となる点であ る.分岐点では構造物が今までと全く異なる変 形状態に移行する可能性が生じ、もし実際の構 造物において,破壊時に変形挙動が急変すると 仮定すれば,分岐点は破壊を数学的に定義し得 る有力な臨界点であると推論される¹⁾²⁾.

2.2 材料モデル

コンクリートの応力 - ひずみ関係は**図 - 1** に 示すようにモデル化した.引張力を受けるコン クリートモデルには,鉄筋との付着をモデル化 するために Tension stiffening model を仮定し,圧 縮ひずみ軟化領域には破壊エネルギーを導入し た.また,履歴モデルには Karsan らの履歴モデ ルを仮定した.なお,解析では,安全側の値と して,圧縮強度を試設計強度の 0.85 倍を仮定し ている.

鉄筋の応力 - ひずみ関係は,一般的なバイリ ニア型とし,降伏後は,初期勾配の 1/100 の勾 配で応力が増加するものとした.また,除荷,

再載荷履歴は初期勾配で応力が変化するものと 仮定した.

3. 解析対象

本研究で解析対象とした橋梁は,土木学会構 造工学委員会「コンクリート製長大アーチ橋の 試設計方法に関する研究小委員会」(委員長:田 邊忠顕)で試設計されたスパン長 600m,ライ ズ 100m を有する長大コンクリートアーチ橋で ある³⁾.解析橋梁の構造および断面諸元を**図 2** に示す.なお,解析ではアーチリブ断面に,文 献³⁾で示される値よりも,桁高,フランジおよ びウェブ厚が小さい最小部材厚モデルを採用し た.軸方向鉄筋は上下フランジにはD16が1段 で,ウェブにはD51が2段で配筋されている. また,アーチリブの断面形状は3室のBOX断 面で,アーチスプリンギング部において幅22m, 高さ10m を有している.

4. 耐荷力解析

4.1 材料の諸元

本解析では,**図**1 におけるコンクリート圧 縮強度 f_c を試設計に用いられた 60MPa とした. また,最大圧縮強度時のひずみは,圧縮強度が 60MPa と高強度ではあるが,道路橋示方書が定 めている帯鉄筋比による算定式を用いて 4000 µ とした⁴⁾.鉄筋は USD685 を用い,降伏 強度は引張,圧縮ともに 685MPa とした.

4.2 解析概要

試設計された長大コンクリートアーチ橋を,

図 3 解析モデル

はり要素を用いて 33 節点,46 要素にモデル化 した.解析モデルおよびアーチリブの要素番号 を図 3 に示す.荷重載荷条件は,変位制御と 荷重制御を組み合わせることにより,死荷重に 比例した荷重を全節点に与えることとした.幾 何学的境界条件は,アーチリブの両端を完全固 定とし,補剛桁端部は鉛直方向および橋軸回り (桁ねじり)方向は拘束,その他の方向は全て 自由とした.

4.3 解析結果

図 4 にプッシュオーバー解析により予測さ れた 600m スパンアーチ橋の鉛直方向,橋軸直 角方向および橋軸方向の荷重-変位関係を示す. なお,橋軸直角方向および橋軸方向では,自重 を鉛直方向に載荷した後,各方向に荷重を作用 させている.

プッシュオーバー解析の結果,鉛直方向に荷 重を載荷した場合,アーチ橋の耐荷力は自重の 約 2.55 倍であることが予測された.ただし,図

5 に示すように,鉛直方向載荷時の変形は, 初期の段階では対象モードであったが,図4 中の point- 付近から非対称モードに変形が移 行していることから,予測された最大耐力は分 岐経路上の値を示していると考えられる なお, 鉛直方向に荷重を載荷する場合には,上述の理 由により,アーチリブ頂部の節点が,他の節点 に荷重が作用することにより変位が戻るため、 本解析ではアーチリブ頂部ではなく,図3に おける節点 の変位増分を制御している.従っ て,鉛直方向載荷時における荷重-変位関係の 変位は,節点の変位である.また,固有値解 析の結果、負の固有値の出現は確認されなかっ たことから、この非対称モードへの変形の移行 は,荷重増加域での自然分岐によるものと考え られる.

橋軸直角方向および橋軸方向に荷重を載荷し

た場合には,変形が対称に進行し,それぞれ自 重の約 0.09 倍,0.23 倍で最大耐荷力に達した. なお,両方向とも変位制御点はアーチリブ頂部 (図 3節点1)である.

接線剛性マトリクスの固有値解析を行い,構造不安定問題に対する検討を行った結果,すべての方向において,2次の固有値は正の状態を保っていた.このことから,本解析で対象橋梁とした 600m スパンコンクリートアーチ橋に静的に荷重が加わる場合には,変形が急激に破壊する経路に移行するような bifurcation point は出現しないものと考えられる.

図 6 に各方向に荷重を作用させた場合のア ーチリブ断面における曲率分布の変化を示す. なお,図 6 中の曲率分布は図 4 中の各印位 置に対応している.また,鉛直方向および橋軸 方向載荷時に対する曲率分布は面内,橋軸直角 方向載荷時に対するものを示している.

鉛直方向において,弾性域からピーク付近ま ではアーチリブの両端および頂部の要素で曲率 が大きくなっているが、ポストピーク領域では 要素 16 内の曲率だけが極端に増加している本 来ならアーチリブ両端の曲率が増加していくこ とが望まれるが,変形モードが非対称になった ことで、ひずみの局所化が要素 16 だけに起こり, 塑性ヒンジが形成されたと考えられる.橋軸直 角方向載荷時では,ピーク付近でアーチリブ頂 部および要素3,14に大きな曲率が発生し,ポ ストピーク領域では頂部の曲率が急激に増加す る.アーチリブ頂部に最大曲率が発生し,曲率 の急激な増加が起こっていることから,塑性ヒ ンジがアーチリブ頂部に形成されていると考え られる.また,橋軸方向では鉛直方向と同様に 荷重硬化域ではアーチリブ両端で曲率増加が確 認されたが,最終的には要素1,6,10でも極め て大きな曲率が発生している.

4.4 アーチ橋への地震入力と対応する耐荷 力に関する考察

プッシュオーバー解析により予測された 600m スパンアーチ橋の各方向の固有周期は,

鉛直方向 3.94(s),橋軸直角方向 8.67(s),および 橋軸方向 6.88(s)と, 各方向ともかなりの長周期 であった.この固有周期を用いて,平成7年の 兵庫県南部地震後に刊行された道路橋示方書の タイプ , 種地盤の設計水平震度の標準値よ り設計水平震度を求めると,橋軸直角方向では 0.07G ,橋軸方向では 0.09G となる結果が得られ た.ただし,この際の地域別補正係数は 1.0 と した⁴⁾.本解析で予測された水平耐荷力と,道 路橋示方書から得られた設計水平震度を比較す ると,橋軸直角方向および橋軸方向における 600m スパンアーチ橋の水平耐荷力は,道路橋 示方書より求めた設計水平震度を上回っている ことが確認された.しかしながら,現在の道路 橋示方書が定める 0.6G の下限値の規定は満た しておらず,地震動への対応なども含め,より 一層の検討が必要であると考えられる.

5. 地震応答解析

5.1 解析条件

時刻歴応答解析における数値積分法には Newmark β 法(β =0.25)を用いた.また,減 衰マトリクスは地震波入力方向の1次振動モー ドを用いた剛性比例型減衰を採用し,減衰比は 3%とした.入力地震動は,**図**7に示す道路橋 示方書標準地震波タイプ,種地盤を用いた. 最大加速度はNSおよびEW成分で約800gal, UD成分で400galである.また,入力方向はNS 成分のみを橋軸方向に作用させる場合,橋軸直 角方向に作用させる場合,およびEW成分を橋 軸方向,NS成分を橋軸直角方向,UD成分を鉛 直方向に3方向同時作用させる場合の計3ケー スとし,自重を作用させた後,地震波を直接ア ーチ基部に導入した.

5.2 時刻歷変位応答

図 7 に示す NS 成分を橋軸方向に入力した 場合のアーチリプ頂部の時刻歴変位応答,およ び橋軸直角方向に入力した場合の時刻歴変位応

-40-

答を図 8 に示す.図 9 に 3 方向同時入力し た場合の橋軸方向,橋軸直角方向時刻歴変位応 答をそれぞれ示す.

図 4 に示したプッシュオーバー解析結果と 地震応答解析で得られた時刻歴変位応答を比較 すると、プッシュオーバー解析で得られた橋軸 方向、および橋軸直角方向における最大荷重時 の変位はそれぞれ90cm、290cmであったのに対 し、応答解析で得られたアーチリブ頂部の橋軸 方向、橋軸直角方向最大変位応答は、それぞれ 15cm、80cmと小さい値であった.また、図 9 に示した3方向同時入力時の橋軸方向および橋 軸直角方向最大変位応答も、プッシュオーバー 解析により予測された最大荷重時の変位に比べ 十分小さいことから、800gal 程度の地震動に対 しても、アーチ橋の変形は耐荷力に達する以前 の段階であることがわかる.

5.3 最大曲げモーメントの検討

地震波を橋軸方向,橋軸直角方向にそれぞれ 1 方向入力した場合の最大応答変位時における アーチリブ断面のモーメント分布を図 10,図 11 に,3 方向同時入力した場合のモーメント 分布を図 12 に示す.また各図には,軸力ゼロ

の状態でファイバーモデルにより算定された各 断面の降伏モーメント,終局モーメントが併せ て示されている.

図 10 における橋軸方向入力時のモーメン トは、アーチスプリンギング部で降伏モーメン トを超えるモーメントが発生しており、3 方向 同時入力の場合にも面内方向のモーメントが同 様の結果となった.これは断面の降伏および終 局モーメントを算定する際に、軸力を考慮しな かったためである.この時点で断面に発生して いる軸力を考慮して断面力計算を行えば、降伏 モーメントは4.70×10⁶[kNm]となり、両ケー スとも降伏耐力を下回る結果となる.また、解 析を通して、鉄筋の降伏が見られなかったこと からも、断面に作用するモーメントは降伏モー メントには至っていないことが確認できる.一 方、図 11 における橋軸直角方向に地震波を入

力した場合,および3方向同時入力の面外方向 モーメントは,降伏耐力まで十分な安全度を有 する結果となった.これは,アーチリブ断面の ウェブ部に鉄筋が十分に配筋されており,橋軸 直角方向の応答に対して十分な耐震性能を有す る設計がなされている結果であると考えられる.

以上により,本研究で解析対象とした 600m スパンコンクリートアーチ橋は,800gal 程度の 地震動に対し十分な安全度を有していると推測 される.

6. まとめ

試設計された 600m スパンコンクリートアー チ橋の耐荷力解析および地震応答解析を行った 結果,以下の結論を得た.

(1)600m スパンコンクリートアーチ橋の鉛直方 向,橋軸直角方向,橋軸方向のそれぞれの耐 荷力を評価した結果,本研究で得られた水平 耐荷力は,現在の道路橋示方書が定める設計 水平震度を上回っているが,0.6Gの下限値の 規定は満たしていない.しかしながら,現在 の道路橋示方書は長周期を対象としておらず, 今後,長周期に対しての耐震設計の検討が必 要であると考えられる.

(2)地震応答解析により耐震性能を評価した結 果,600m スパンコンクリートアーチ橋は 800gal 程度の地震動に対しては十分な安全度 を有していると考えられる.

参考文献

- 中村光:コンクリート構造のポストピーク挙動に関する解析的研究,名古屋大学博士論文, 1992
- 2)姫野正太郎,田邉忠顕:長大スパンコンクリ
 ートアーチ橋の非線形動的解析,コンクリー
 ト工学年次論文報告集 Vo.21 ,No3 ,pp.385-390, 1999
- 3)土木学会 構造工学委員会:コンクリート長 大アーチ橋の設計・施工技術の現状と将来, 構造工学技術シリーズ No.19,2000
- 4)日本道路協会:道路橋示方書・同解説 耐震 設計編,丸善,1997