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3D REINFORCED CONCRETE ANALYISISBASED ON LATTICE
EQUIVALENT CONTINUUM MODEL IN KINEMATIC CONSTRAINT

Syed Ishtiag AHMAD™* and Tada-aki TANABE ?

ABSTRACT: In this paper, robust and engineering oriented three dimensional reinforced concrete
constitutive laws are formulated from the concept of equivalent continuum of lattice system in known strain
field i.e. kinematic constraint. Shear lattice is introduced in the system for transfer of interlocking shear
stresses between the contact surfaces of adjacent concrete lattices. A beamcolumn-dab assembly is then
investigated applying the developed model. The cal culation results show good agreement with the experiment.
KEYWORDS: reinforced concrete, lattices, congtitutive equations, three-dimensiond models

1. INTRODUCTION

The lattice equivalent continuum model, hereafter LECM, has previoudy been developed and applied to
two dimensiona problems in reinforced concrete, and its analytical results showed good agreement with the
experimental results for loth static and time varying load [1]. However, three dimensiona congtitutive
equation for concrete structures needs to be developed in order to analyze real behavior of concrete structures.
In a previous paper [2], concept of three-dimensional approach to be taken in LECM was elaborated in detail
from different congtraints point of view and was applied to plain concrete. In this paper that concept is
extended with the introduction of crack surface modeling by introducing shear lattices and its vaidity is tested
for real three-dimensional reinforced concrete behavior by analyzing a beam-slab-column assembly.

2. FORMULATION OF THE CONSTITUTIVE EQUATION

In the formulation for constitutive laws of concrete in LECM, reinforced concrete is assumed as cracked
and composed of steel and concrete lattices. The stresses and direction of the steel lattices are those of
reinforcing sted itself, while crack directions in concrete, which in turn fixed by principa stresses, determine
concrete lattices and their orientation. Although formulation is based on cracked reinforced concrete, it can
easily be extended to un-cracked reinforced and plain concrete as well.

We begin assuming uniformly strained 3D continuum as shown in Fig.1(a), strain of which read in the
global coordinate,

{eg} e e € g, 9, gl 1)

The strain in a lattice member in this strain field is assumed to be identical with the strain of Eqgn.(1).
Therefore, for an inclined member of lattice for which loca coordinate (X ,h,z ) is taken such that x

coordinate coincide with lattice axis, lattice strain €, reads,

et=1? m® n Im mn nl]{eg} )

Where |, mand n are directions cosines of the lattice direction with respect to x,y and zaxisas shownin
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(a) Uniform Lattice (b) Locd Coordinate in a Lattice Unit
Fig.1l Latticein Uniform Strain Field

Fig.1(b). If n number of lattices existsin the continuum we can write,

fe}=[LJe,} ®)

where, [Le] is the matrix to transform stress from global to loca coordinate considering ‘n’ number of lattices.

Multiplying strains with stiffness of each lattice, the incremental stresses of the replaced continuum can be
evauated as,
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where, 1, = s, /e, , denotes the tangentia stiffness of Individual lattices. Continuum local stresses
transformed to global coordinate has the following form:
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which can be written as,

b=l b= LT R e, )
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where, [o] =[L.[R]L.] ™
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Eq.7 is the genera form of the constitutive matrix for lattice equivalent continuum based on kinematic
congraint. For the implementation of the form to reinforced concrete, it is necessary to evaluate crack
occurrence. Once the crack is detected, continuum congtitutive eguation is transformed into the form of Eq.7.
In this study, failure surface proposed by Kang and Willam [3] is used as the criteriafor crack occurrence. The
curvilinear failure envelope, according to their proposed formulation, is a function of the three stress
invariants |,,J, and J; and is expressed as.

rr(,e) r,éx-x
FX,r,a)m = (? )' f_l-(_E_ :
c cexl-XO

u
g =0 (8)
G

In this work, eventud failure stress of any principal stress or lattice direction is taken as the one, whichis
achieved by decreasing (for tension, increasing) it up to failure surface (i.e. Eq. 8 ) while keeping other two

stresses fixed. If (S,,S,,S ;) represent stress gstate of the current loading step in numerica computation.
(S 1S 2,8 ,3) which liesin the failure surface, is achieved by changing stress pardlel to S ; direction. In the

following step of numerical computation, s, represent the failure stress to compare with for cracking in that

direction. Same procedure is applied for evaluating eventual peak stresses in other two directions. Upon
detection of aacking, continuum equation transfers from elastic to lattice equivalent continuum with Eq. 7
being the governing equation.

3. MODELING CRACK SURFACE IN TERMSOF SHEAR LATTICE

Shear lattice h
h / Plane f
|

Shear Lattice plane containing X - h axis

Fig.2 Crack Surface and Shear Lattice Modeling

The 3D formulation developed herein decomposes the incrementd strain {De} into the uncracked or

elastic strains {Dee} and the crack strain {Decr} . Four lattices are introduced for one cracked plane surface a
a sampling point to transfer the cracked portion of the total strain in the concept of interlocking between
adjacent faces. However, due to the limited volumetric characteristics in interlocking region in a cracked face,

amodification factor, in the name of shear controlling matrix [M is introduced in the system. Therefore, we
get, from crack gtrain,
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{De,}=[Wfpe, D, -e,) De, Dy, Dg, Dg,} ={0 De, O Dg, Dy, Of (9

Two lattices are introduced in each of the loca coordinate direction parald to the cracked plane as shown in
Fig. 2. Among these two, the lattice that is activated to bear the stresses depends on the negative or positive
traction direction as shown in Fig 2. Now, incremental stresses in the shear lattice direction of S1 and S (in
plane X - h) and S3 and $4 (in plane h - V, not shown in the figure) can be evaluated using following
relation:

€, 0 0 00
€0 E o oY

{DS sl} = g 0 082 E 0 'Te,Sl,SZ,S3,S4]{Decr} = [Dshear,uni][Te,Sl,SZS3,S4]{Decr} (10)
~ S3 7
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where, |.Te,Sl,Sz,53,s4J is the matrix to transform incremental strain from local direction to shear lattice

direction. Multiplying that incremental strain with tangent giffness modulus of individual lattices, we derive
the stress increment in shear lattices. Direction of shear lattice depends the angle of the protruding elements of

the rough surface i.e. q , asshown in Fig.2 and Eg =1s /ey is the tangent elastic modulus from
uniaxia stress strain relation of individual shear lattices. Local stress increment can be evaluated using the
following relation:

[S | ] = [VV][TS ,31,52,53,54]- l{DS sl} (12

Therefore, we get, constitutive matrix for shear lattice to be;

[Dshear]XYz = [Ts ] ' [Dshear]xhz [Te ] (12)

where [TS] and [Te] are transformation matrix, and

[Dshear ]th = [M [Ts ,51,52,S3,54 ] N [ Dshear,uni ][Te,SL S2,S3,54 IW] (13)

Therefore, the completed congtitutive law for single crack in a sampling point,

[Diga] = [P * [T ] *[Detear s [T (14)

For n number of cracks in a sampling point, we get, the fina form of congtitutive matrix in LECM for
reinforced concrete:

[Dtotal] = [D main] + é [TS ]i_l[DSheari ]xhz [Te ]i (15)
EQq.15 denotes the completed constitutive matrix for reinforced concretein LECM.

4. NUMERICAL INVESTIGATION
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Fig.3 Beam-Column-Slab Specimen
Tablel: Steel Material Properties
Bar Sze fsy (MPa) e, fsu (MPQ) e,
#4 531 .00256 752 .0146
#6 414 00214 635 .0121
#8 483 00241 717 .0124

An exterior beam-columndab assembly [4] is analyzed using the proposed formulation. Details of the
geometry and reinforcement are  shown in Fig.3. During testing, an axial compression of 178KN was
maintained on the column, andthe free end of the longitudina beam was subjected to reversed cyclic
of increasing amplitude up to failure to simulate earthquake-type loading. The FE mesh used in the analysis is
shownin Fig 4 and is composed of 344 eight-noded solid e ements totaling 619 nodes to model half of the test
specimen. Fig 4 also shows the upward exaggerated deflection of the pattern of the dab assembly. An extra
layer of dements with artificidly assigned high strength was added to the end of the longitudina beam to
facilitate the application of displacements (loading) during analyses. Restraining the vertical displacements of
the column centerline nodes mechanical hinges were simulated at the top and bottom of the column. For
concrete, f.and f; values are taken as 45.2 and 4.97 MPa, while, E and G; vaues are taken as 38.3Gpa and 300
N/m, respectively. Steel materia properties are shown on Table 1. One fourth modd is proposed by Rokugo
et a. is used to modd tension behavior of concrete except in heavily reinforced region, where tension
gtiffening model is used. Two analyses were conducted considering upward and download monotonic
displacement of the free end of the longitudinal beam while the column was subjected to an axial compression
of 178 KN. The column load, modeled as uniformly distributed over the elements of its top end, was applied
first. Then the top nodes of the protruded elements at the free end of the beam were displaced incrementally
and the corresponding reactions were computed as the applied force. The result of the dab end load
displacements for the upward loading (UL) and downward loading (DL) cases are compared with the
envelopes of the experimentd results along with the magnified deflected shape is shown in Fig.5. As can be
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Fig.4 Finiteelement mesh with deflection Fig. 5 Comparison of Slab End Load vs. Disp.

pattern for upward load

seen from the figure, analyses results show good agreement with the experimental ones. For upward loading
casg, it can be seen that analysis result isaround 10% higher than that of experimental results. This higher
strength may be due degradation of concrete under the actua cyclic load which was not considered in the
analysis.

5. CONCLUSION

The three dimensional congtitutive laws for reinforced concrete based on LECM are formulated and
presented in this paper. From the example shown in this paper, it can be concluded that lattice equivalent
continuum method can effective predict the behavior of structures in three dimension.
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