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ABSTRACT: In meso-scopic level, concrete consists of mortar and aggregate. Rigid Body Spring Method 
is a useful analytical method to simulate discrete behavior like fracture. This study presents constitutive 
models for mortar and mortar-aggregate interface in meso level and simulates fracture process of mortar 
and simplified concrete model. To formulate arbitrary crack path, the Voronoi diagram is introduced. The 
analytical results are compared with experimental results. 
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1. INTRODUCTION 
 

Concrete is a composite material consisting of aggregate and mortar in meso-scopic level. Evaluation 
of the fracture process in this level is useful to quantify concrete properties in macro level in which the 
concrete is assumed homogeneous. It is considered, furthermore, that influences of environmental action 
on the mechanical characteristics of concrete can be clarified more precisely using the analytical approach 
in meso-scopic level. Many experimental studies on the fracture mechanism in meso level have been 
conducted. However almost no numerical analysis of the fracture process in meso level has been carried 
out. In this study, numerical simulation of compression and tension tests of mortar and compression tests 
of simplified aggregate-mortar concrete model are conducted by Rigid Body Spring Method (RBSM). 
This analytical method is useful to simulate the fracture process of concrete. Macro-scopic constitutive 
models of RC structures for RBSM have been developed by Saito and Hikosaka[1], however no 
constitutive model in meso level. In this study, constitutive models for mortar, aggregate and interface are 
presented in meso level. The fracture process and behavior of each component, aggregate, mortar and 
interface, are examined and the macroscopic stress-strain curves are compared with experimental results.   
 
 
2. ANALYTICAL METHOD 
 

A rigid body spring method developed by Kawai [2] is one of discrete approaches. Analyzed model is 
divided into polygonal elements interconnected along their boundaries by springs (Fig.1).  

Each element has two translational and one rotational degrees of freedom defined at a certain point 
within the element. The interface between two elements consists of two individual springs. Normal and 
shear springs are placed at the midpoint of the boundary. Since cracks initiate and propagate along 
boundaries between elements, the mesh arrangement may affect fracture direction. It means that the crack 
pattern is strongly influenced by the local structure of the network. To avoid formulation of cracks with 
unarbitrary direction, a random geometry is introduced using a Voronoi diagram (Fig.2). The Voronoi 
diagram is the collection of Voronoi cells. Each cell represents aggregate or mortar element in the analysis. 
 
 
3. CONSTITUTIVE MODELS 
 
3.1 MORTAR AND AGGREGATE MODELS 

Material characteristics of mortar and interface are represented by means of the modeling of springs.  
In normal springs, compressive and tensile stresses (σ) are developed. Shear springs develop shear stresses 
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(τ). Properties of the springs are determined based on the macro-scopic mortar properties. Aggregate 
model in this study is similar to that of mortar.  

Only the maximum tensile stress has to be set as a material strength. Actually, mortar itself is not a 
homogeneous material even when bleeding effect is ignored. However strength distribution of concrete 
has not been clarified yet. In this study, normal distribution is assumed for the tensile strength on element 
boundary. The probability density function is as follows (Fig.3), 
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where ft elem is distributed tensile strength on the element boundary in mortar and ft average is average tensile 
strength of the element in mortar. 

And the elastic modulus is assumed to follow the same normal distribution as the tensile strength. 
Those distributions affect the macro-scopic elastic modulus, so that the elastic modulus for the element is 
multiplied by 1.05. 

  Considering the effect of stress concentration due to random geometry in analysis, the average tensile 
strength of the element in mortar, ft average is obtained as follows,  
 

macrotaveraget ff 25.1=                            (2) 

 
where ft macro is macro-scopic tensile strength of mortar. 

In the analysis, the elastic modulus and Poisson’s ratio 
are given to each boundary of the elements. However due to 
the random geometry of the elements, values of the material 
properties given to the element which are the material 
properties in meso level are different from those of the 
analyzed object as the macro-scopic material property. In 
this study, the material properties for the element were 
determined in such a way to give the correct macro-scopic 
properties. For this purpose, the elastic analysis of mortar in 
compression was carried out. It was found that element 
fineness affects the analytical result [3]. Therefore element 
fineness of these models was the same level as the models 
analyzed in the later section to eliminate the influence of 
element fineness. In the elastic analyses, the relationship 
between the macro-scopic and meso-scopic Poisson’s ratio 
and the effect of the meso-scopic Poisson’s ratio on the 
macro-scopic elastic modulus were examined. From the 
analytical results (Fig.4), Eq.(3) is adopted for determining 
the meso-scopic material properties. 
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where νelem is the meso-scopic Poisson’s ratio on element 
boundary, ν is the macro-scopic Poisson’s ratio, Eelem is the 
meso-scopic elastic modulus, and E is the macro-scopic 
elastic modulus. 

Springs act elastic until generated stress reaches τmax 
criteria as follows, 
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Fig.2 Voronoi diagram 

Fig.3 The probability density function
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where kn and ks are elastic modulus and shear modulus of the 
spring assuming plane stress, ε and γ are the strain of normal 
and shear springs, respectively. τmax criterion is given as shown 
in Eq.(5) and Fig.5. 
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When a generated spring stress goes beyond τmax, the 

shear stress(τ) is reduced to τmax which depends on the normal 
stress(σ) in the range that the normal stress is less than ft elem. 
τmax can increase with increasing normal compressive stress. 
Stresses can be transferred only through the contact area of 
each boundary which is calculated by the displacement of 
elements consisting of the boundary. Fracture happens 
between the elements when the normal stress reaches ft elem, 
and the normal stress becomes dependent on crack width that 
is the spring elongation. Shear stress is also affected by crack 
width. Both normal and shear stresses are assumed to decrease 
linearly with crack width. Stresses after cracking are 
represented as follows (Fig.6), 
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where w is crack width and wmax is the maximum crack width 
which can carry stress. In this study, wmax is set 0.05mm.  
    In this study, normal springs in compression only behave 
elastically and never break nor have softening behavior.  
 
3.2 INTERFACE MODEL 

The same stress-strain relationships as Eq.(4) and strength 
and stiffness distribution as Eq.(1) are assumed for the 
interface between mortar and aggregate. The spring stiffness kn 
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Fig.7 Failure criteria for interface 
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and ks of the interface are given by a weighted average of the material properties in two elements 
according to their perpendiculars. That is,  
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where subscripts 1 and 2 represent to elements 1 and 2, respectively (Fig.1). For the interface between 
mortar and aggregate, the failure criteria suggested by Kosaka, et al [4] is adopted (Fig.7). The criteria 
were derived from experimental results. After stress reaches the failure criteria, normal spring can transfer 
only compressive stress and shear spring breaks and cannot transfer the stress any more.  
 
 
4. ANALYTICAL RESULTS AND COMPARISON 
 
4.1 ANALYSIS OF MORTAR 

Numerical analyses of mortar specimen in N30M in uniaxial compression and tension are carried out.  
The analytical model and material properties are shown in Fig.8 and Table1. The macro-scopic Poisson’s 
ratio could not be obtained from the experimental data so that it is assumed 0.18 in the analysis. In the 
analytical model, the number of mortar element is 2596. Boundaries of the top and bottom are fixed in the 
lateral direction in compression test and not fixed in tension test. 
    Figures 9 and 10 show predicted stress-strain relationships. The maximum stresses observed in the 
experiment [4] and the analysis are shown in Table2. The maximum stresses in the analysis agree well 
with the experimental results. The experimental result shown in Fig.9 was taken from the previous study 
[6] where only stress-strain relationship is given. Fig.9 shows that the shape of analytical axial strain 
agrees well with the experimental one. The analytical curve for the lateral strain looks like the one 
observed in experiment. The analytical stress-strain curve in tension indicates some nonlinearlity before 
peak stress as much as in compression (see Figs.9 and 10). At present, there is not enough evidence on 
how much nonlinearlity should be in tension. Further investigation is necessary. Fig.11 shows the 
deformation at compression failure in the analytical result. Shear failure can be seen as usual experiment.  

(7) 
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Loading boundary 

Fix boundary 

Fig.8 Analytical model 

Table 2 Macro-scopic maximum stress of mortar 
 Compressive (MPa) Tensile (MPa) 

N30M- Experiment 27.34 2.96 
N30M-Analysis 28.05 3.32 

 

Fig.9 Stress-strain curve in compression  

Fig.10 Stress-strain curve in tension Fig.11 Deformation at failure 
(Deformation is enlarged 10times) 

0 100 200 3000

1

2

3

Strain (μ)

St
re

ss
 (M

Pa
)

Analytical result

( Deformation (mm) )

(0.02) (0.04) (0.06)

Table 1 Macro-scopic material properties 
 E (MPa) ν  ft (MPa) 

N30M 20090 0.18 2.96 

-0.5 0 0.5 1

 Analytical result
 Experimental result

Nomalized strain

N
or

m
al

iz
ed

 st
re

ss

1

0.5 Axial strainLateral strain

-166-



4.2 ANALYSIS OF CONCRETE MODEL 
   Numerical analysis of three types of concrete model consisting of mortar and single circular aggregate, 
N30, N60 and N90, are carried out. The results are compared with experimental results conducted by 
Kosaka et al [4]. The experimental and analytical models are shown in Fig.12 a) and b). Boundaries on top 
and bottom are not fixed in the lateral direction. Element arrangement near the interface between 
aggregate and mortar is shown in Fig.12c). Number of the elements in the analysis is 2924. In the 
experiment, the circular aggregate was made of mortar so that the material model type of the aggregate is 
the same as that of mortar in the analysis. Table3 shows material properties of the mortar, aggregate and 
interface. Values of those properties are obtained by the experiment conducted by Kosaka et al [4]. Tensile 
strengths in Table.3 are modified to pure tensile strengths with the equation of previous study [5]. In 
model N30, strength of the aggregate model is higher than that of mortar. In model N60, mortar and 
aggregate parts have almost same strength. The mortar has higher strength than the aggregate in model 
N90. Since the Poisson’s ratio could not be obtained from the experimental data in the reference [4], it is 
assumed 0.18 for both mortar and aggregate in the analysis.  
      Fig.13 shows the experimental and analyrtical results of the models. Analyses were carried out until 
the failure patterns became clear. In each case, the analysis cannot trace the experimental results on the 
displacement at the peak stress. However, the maximum stresses agree well with the experimental results 
in models N30 and N60. In model N90, analysis overestimates the experimental result. In this model, 
aggregate part is weaker than the mortar part so that the failure of the model is governed by the crush of 
aggregate part. The reason of the overestimate may be the fact that the analysis can not simulate the 
crushing in the aggregate well. Futher research is necessary. Fig.14(a) shows the mesured strains in model 
N30. Positions of the gages are also indicated. Fig.14(b) shows the analytical results of strains at the same 
positions. The strain was calculated from the deflections of selected two elements. Althought values of the 
analytical strains have scatter depending on the selection of the elements, similar tendency can be seen in 
the analysis. Figs.15(a)-(d) show the change in stress distribution of model N30 around the peak stress. 
Before the peak load, bond cracks between the mortar and aggregate have already existed (Fig.15(a)). 

Fig.14 Strain in model N30 

(a) Experimental results (b) Analytical results 
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Table3 Material properties of analytical models 
 N30 N60 N90 

Mortar W/C 0.6 0.6 0.6 

Mortar f ’c (MPa) 27.34 28.42 25.48 
Mortar ft (MPa) 2.96 3.27 3.28 

Mortar E (MPa) 20090 18522 18816 
Aggregate W/C 0.3 0.6 0.9 

Aggregate f ’c (MPa) 54.59 28.62 15.78 

Aggregate ft (MPa) 4.37 3.35 1.92 
Aggregate E (MPa) 24206 18816 10388 

Interface c (MPa) 3.14 3.43 2.16 

Interface φ  33° 34°  35° 
Interface ft (MPa) 0.852 0.852 0.852 

 
a) Experimental model 

 

b) Analytical model 

c) Interface zone

Fig.12 Experimental and analytical model
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After that, the bond cracks penetrate into the mortar and propagate in the axial direction 
(Fig.15(b)-Fig.15(d)). This fracture process is the same as that of in the experiment reported by Kosaka at 
al [4]. 
  Deformations at failure are shown in Fig.16. The mortar fracrture charactrized by a diagonal crack 
near the aggregate and an axial crack propagating to the edge on one side of the aggregate. No fracture of 
the aggregate exsists in model N30. Aggregate fractures slightly in model N60. In model N90, fracture 
penetrates the aggregate part. In the experiment, the mortar fracture happened both in upper and lower side 
of the aggregate. This difference may cause the diagreement between the experimental and analytical 
results in Fig.15. However the analyses can simulate the difference of fracture in the aggregate part 
between the three models [4]. 
 

 
5. CONCLUSIONS 
 

The followings were concluded from the analyses of mortar and concrete model using Rigid Body 
Spring Method (RBSM), where only tension and shear failure of spring but compression failure is 
assumed. 
(1) RBSM developed in this study can simulate reasonably fracture process of the mortar and concrete 

model.   
(2) The stress-strain relationship in both tension and compression of the mortar can be predicted by 

RBSM. 
(3) The compressive strength of the concrete model can be predicted by RBSM, however the strain at the 

peak stress cannot be predicted well. 
(4) RBSM can predict qualitatively the influence of aggregate strength on the concrete model strength. 
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