論文

L形柱梁接合部の挙動がRC架構に及ぼす影響

菅沼 孝紀*¹·向井 智久*²·野村 設郎*³

要旨:鉄筋コンクリート造L形柱梁接合部の変形が架構に及ぼす影響を検討するために, 2次元 FEM 解析及び載荷実験を行った。その結果,L形柱梁接合部のせん断強度は各接 合部挙動時(柱,梁間の開く時・閉じる時)に靭性保証型耐震設計指針における計算値より 大きな値であることが認められた。また,実験及びFEM 解析では層せん断力はおおよそ 適合しているが,実験では柱・梁間が開く場合に接合部が変形することで,柱の剛性が 変化し各柱の負担せん断力及び変形に違いが生じ,設計段階で想定していない柱せん断 破壊によって架構の崩壊モードが決定した。

キーワード:L形柱梁接合部,架構,接合部変形,柱負担せん断力

1. はじめに

現行のRC造柱梁接合部のせん断強度は, 靭性 保証型耐震設計指針¹¹(以下靭性指針)及びRC計 算規準²¹において接合部の形状ごとに設定した 平均せん断応力度の上限値に有効断面積を乗じ て求められる。しかし, 近年の研究³¹において 各L形柱梁接合部挙動(柱,梁間の開く側・閉じ る側, 以下 open side・close side, 図-1参照)の違 いにより最大耐力及び破壊性状が異なると言う 研究が報告されているが, 既往の算出式は各L 形柱梁接合部(以下接合部)举動の違いを反映し たものではない。また, 各接合部の挙動が架構 にどのような影響を及ぼすかは明らかでない。

そこで本研究では,各接合部の挙動に着目し て,接合部の変形が RC 架構に及ぼす影響を実 験的・解析的に検討する。

2. 試験体設計

試験体は, 一層一スパンの架構試験体1体で ある。部材寸法は, 梁断面200×200(b×D),柱 断面(b×D)200×200, 梁内法長さ(L)1300mm, 柱内法高さ(H)800mm とし約1/4スケールを想 定した。図-2に配筋詳細を示す。梁主筋は上下

ともに3-D13, 柱主筋6-D13, 梁補強筋3-U5.1@ 80, 柱補強筋3-U5.1@50, 接合部補強筋は柱と 同様である。梁主筋の接合部内での水平投影長 さは梁上端筋で174mm, 下端筋で161mm とした。 梁上端筋折曲げ部余長は RC 計算規準により25 d_b(d_b:梁主筋径),梁下端筋は8.5d_b とした。**表-1** に使用材料一覧を示す。各材料試験から鉄筋の 降伏強度は梁主筋451MPa, 柱主筋693MPa, コ ンクリート強度は17.38MPa となった。

柱,梁部材の曲げ耐力は精算解,せん断耐力 は靭性指針により算出し,接合部のせん断耐力 もまた靭性指針により算出した。各部材が終局 強度に達し,架構がある崩壊型を形成する場合 (4パターン:梁降伏時・柱降伏時・柱せん断破 壊時・接合部せん断破壊時)の層せん断力(各柱 のせん断力の和)を表-2に示す。接合部せん断

*1 東京理科大学大学院 理工学研究科建築学専攻 (正会員)*2 東京理科大学助手 理工学部建築学科 工修 (正会員)*3 東京理科大学教授 理工学部建築学科 工博 (正会員)

表-1 使用材料一覧

分开 合 在	鉄筋径	降伏強度	ヤング係数	
亚大月刀		(MPa)	×10 ⁵ (MPa)	
柱主筋	D13	693	1.61	
梁主筋	D13	451	1. 62	
補強筋	U5. 1	1485	1. 88	
	圧縮強度	引張強度	ヤング係数	
コンクリート	(MPa)	(MPa)	×10 ⁴ (MPa)	
	17.38	2.67	1.95	

表-2 架構の各崩壊型形成時における層せん断力

梁降伏時(梁端・柱脚ヒンジ)	146.3(kN)
柱降伏時(柱頭・柱脚ヒンジ)	185.2(kN)
柱せん断破壊時(柱せん断破壊)	182. 4 (kN)
接合部せん断破壊型 (接合部せん断破壊・柱脚ヒンジ)	119. 7 (kN)

図-3 コンクリート応力-ひずみ関係

破壊時での層せん断力は、各接合部の入力せん 断力 V_j がせん断強度 V_{ju} (close side : $V_{ju}=V_j=T$, open side : $V_{ju}=V_j=T-V_c$)に達した場合を想定し 算出したものである。本実験では、接合部破壊 が先行するように設計した。

3. FEM解析概要

本研究では汎用プログラム DIANA⁴を使用し, 2次元 FEM 解析を行い,実験と同様の材料定数 を用いた(表-1参照)。

3.1 有限要素と材料モデル

【コンクリート】 コンクリートには3・4節点 アイソパラメトリック平面要素を用い,破壊条 件には総ひずみに基づく分布ひび割れモデルを 用いた。図-3に示すように,圧縮応力-ひずみ 関係にはThorenfeldtらが提案した曲線を用い, ひび割れによる圧縮強度の低減とコア部には横 補強筋による拘束効果を考慮した。引張軟化域 には Hordijk らが提案した曲線を用いた。ひび 割れ時の破壊エネルギーGr を0.05MPa, ひび割 れ後のせん断剛性低下率を10%と仮定した。

【鉄筋】 鉄筋には、2節点トラス要素を用い、 各鉄筋の応力-ひずみ関係は、材料試験結果を もとに tri-linear モデルとした(図-4参照)。降伏 条件は Von Mises の条件を適用した。

【接合要素】 鉄筋とコンクリート間の付着特性には、2節点ボンドリンク要素を用い、付着応 カーすべり関係は図-5に示すようにモデル化した。付着強度の算定には、藤井・森田⁵⁰の提案 式を用い、初期剛性は森田・角⁶⁰の実験結果により定めた。

3.2 試験体のモデル化

有限要素分割を図-6に示す。柱,梁主筋及び 補強筋とコンクリートの間には,すべてボンド リンク要素を用いた。載荷方法は単調載荷とし, 梁中央右向きに載荷し,層間変形角は載荷点の 梁底面位置での水平変位を柱の内法高さで除し た値とした。境界条件はベース上面を x,y 方向 とも固定した。また,柱主筋の抜け出しを考慮 するために,柱主筋をベース下面で固定した。

3.3 解析結果

図-7・8に層間変形角と層せん断力及び接合部 入力せん断力の関係を各々示す。図-8に示すよ うに、接合部(close side)入力せん断力が層間変 形角 R=16/10⁻³rad. (以下R16と示す。/10⁻³rad. は 省略する)で急激に低下した。これは、図-9に 示すように, 接合部内折曲げ主筋によるコンク リートの支圧破壊(×印はコンクリートの歪度 が0.003に達した箇所を示し、その歪度で圧壊 が生じると仮定)が原因であると推察される。 その後,梁の引張主筋(open side)が層間変形角 R23で降伏し, 柱脚の引張主筋(open side, close side) がそれぞれ層間変形角 R22, 27で降伏し た。層間変形角 R27を越えた段階で層せん断力 が最大に達し,架構の崩壊系が形成されたと推 測される。また、ピーク以降の顕著な耐力低下 は見られなかった。以上より FEM 解析におい て梁主筋(close side)は降伏せず, 接合部(close side)入力せん断力の低下が見られたことから, 梁降伏型が形成される前に接合部の影響で架構 の崩壊系が形成したものと考えられる。

4. 実験概要

4.1 実験方法

試験体はベースを固定し,梁中央にアクチュ エーターを接続した鉄骨により載荷した。載荷 履歴は正負方向(アクチュエーターが載荷用鉄 骨を引く場合を正加力,逆を負加力とする。以 下正加力を+,負加力を-)に初ひび割れが確認

接合部のひび割れが開口した 図-11 最終破壊性状図 図-12 接合部破壊性状図

されるまで荷重制御,その後変形制御で各変形 角ごと(変形角 R2.5,5,10,20,40,80)に正負繰 り返し漸増載荷を行った。層せん断力は,梁中 央に載荷するアクチュエーターの荷重値とし, 層間変形角は,FEM 解析と同様の方法を用い 算出した。

4.2 実験結果

図-10に層間変形角と層せん断力の関係を示 す。正加力時では引張軸力を受ける柱において, 層間変形角+R15で柱脚引張主筋(open side)が降 伏し,層間変形角+R44の2cycle目において層せ ん断力の低下が確認され,層せん断力の最大値 は130.5kNに達した。負加力時では圧縮軸力を 受ける柱において,層間変形角-R23で柱脚引 張主筋(close side)が降伏し,層間変形角-R43 の2cycle 目において層せん断力の低下が確認さ れ,層せん断力の最大値は127.9kN に達した。 正負の最大層せん断力に違いはほとんど見られ ないが,柱(open side)に比べ柱(close side)の柱 脚が小さい変形で降伏していることが分かる。 図-11・12に示すように,接合部(open side)に おいて,層間変形角が± R10を越えると接合部 (open side)の対角線上に発生するひび割れが大 きく進展し,開口した。

結果として,架構の層せん断力の低下は柱 (close side)のせん断破壊により発生したと推察 される。設計段階では,破壊形式は接合部破壊 又は梁降伏により架構の崩壊系が形成すること を想定し,柱が負担するせん断力に対してせん 断設計を行っていたが,それ以上のせん断力を 柱が負担したことにより,柱せん断破壊が発生 したと考えられる。このことは使用材料の強度 のばらつきにより,接合部(close side)の梁端曲 げモーメントが設計段階に想定した値より増加 したことにより,柱(close side)負担せん断力が 増加したことが原因と考えられる。

4.3 実験結果と解析結果の比較

図-13に層せん断力と層間変形角の実験結果 (正加力時の包絡線)と解析結果の比較を示す。 図-13から実験の最大耐力は FEM 解析に比べ, 繰り返し載荷の影響によりやや小さくなるが, おおよそ適合していることが分かる。しかし, 実験では上述したように柱せん断破壊が発生し たと推察されるが,解析ではそのような破壊は 見られなかった。

図-14(close side)・15(open side)は各変形角に おける接合部入力せん断力 V_j を示す。各直線 は実験値・FEM 解析値・計算値を示し,実験 値は梁引張主筋の歪度を主筋の応力 T に換算 し,柱せん断力 V_e を用いて算出した(close side : V_j =T, open side: V_j =T- V_e)。また,計算値は 靱性指針式より算出した値 V_{ju} (図-14・15に示す 各計算値の違いは,水平投影長さ D_j の違いに よる)である。3.3に示したように接合部(close side)において,FEM 解析ではコンクリートの

支圧破壊が起こったが、図-14において実験で は約+R44までは入力せん断力は増加している ことから、支圧破壊が発生していないと推察で きる。また接合部(open side)において、図-15 より FEM 解析では接合部の開口現象を模擬す ることが困難であるため、実験との変形角に差 が生じたと推察できる。これらのことから、今 回用いた2次元 FEM 解析では架構の崩壊メカニ ズム及び接合部の破壊を推定することは難しい と考えられる。また図-14・15から靭性指針式よ り算出された接合部強度に対して、実験より算 出された接合部入力せん断力が大きく上回るこ とが分かる。これにより、靭性指針式は各 L 形柱梁接合部の強度を精度良く算出できないと 考えられる。以上より、次章で各接合部の挙動 が,架構に及ぼす影響を検討する。

5. 考察

5.1 接合部変形と柱負担せん断力

図-16は層間変形角と接合部 (open side)の 梁端曲げモーメントの関係を示す。ただし実験 値の梁端曲げモーメントは主筋の歪みから算出 している。また計算値は,精算解より算出した 値を示す。図-16より梁端曲げモーメントは曲 げ降伏値に達することはなく,また層間変形角 R10までは増加するが,R10を越えると徐々に減 少し,その後ほぼ一定の値を示す。また,図-1 1・12に示した破壊性状から,層間変形角 R10を 越えると接合部の開口が増大したことを確認し ている。これらのことから,接合部(open side) の挙動が梁端曲げモーメントの減少に影響を及 ぼしていると推察される。その後柱(open side) の柱脚降伏により,柱(open side)の負担するせ ん断力が頭打ちしたと考えられる。

そこで,最大層せん断力時(130.5kN)の各柱 が負担するせん断力を算出し検討する。図-17 は層間変形角と各柱負担せん断力の関係を示す。 図-17より柱(close side)部材の負担せん断力は, 85.4kN と算出され,各柱負担せん断力の比は ほぼ7:3(close:open)となり,各柱の負担せん断

カ及び変形に大きな差が生じた(図-18参照)。 この原因は接合部(close side)が剛接である一方, 接合部(open side)ではその変形により剛接の状 態が緩和されることで,各柱の剛性 K の値に 違いが生じるためと考えられる(式1・2参照)。 このように,接合部(open side)の挙動により各 柱の負担せん断力が変化することが考えられる。

5.2 接合部挙動を考慮したRC架構の

保有耐力算出法に関する検討

一般的に崩壊系を梁降伏型として構造物を設 計する際,接合部は剛であるとしているため,

-437-

図-19に示すモーメント分布が考えられる。し かし、上述したように接合部(open side)の変形 により剛接の状態が緩和されることで梁端モー メントの低下が見られることから、図-20に示 すように梁降伏型が形成されないモーメント分 布 (open side の柱及び梁の負担モーメントが減 少する)となることが考えられる。その結果, 式3より柱頭(open side)負担曲げモーメント M。 が減少するため、柱 (open side)の負担せん断 力 Qopenは低下する。この場合、式5に示す保有 耐力は図-19と比較して減少する。また図-21は 20に比べ大きな層間変形時に、柱脚が降伏する

1.	柱脚曲げ降伏時の各柱せん断力を算出		
	$Q_{open} = (M_c + M_{cy})/h_0 $	(3)	
	$Q_{close} = (M_{by} - M_{cy})/h_0 $	(4)	
2.	架構の保有耐力Qを算出		
	$Q = Q_{open} + Q_{close}$	(5)	

May:梁降伏時曲げモーメント May:柱脚降伏曲げモーメント Ma:柱頭曲げモーメント Mby Mbv ヒンジ Qoper ho Qclose Mcv Mc 図−19 梁降伏時モーメント分布 Mby 7Mc Qopen ho Qclose 図-20 接合部挙動を考慮した モーメント分布.1 Mby ほぼピン状態 Qoper h٥ Qclose McN 図-21 接合部挙動を考慮した モーメント分布.2

場合を示す。柱脚降伏モーメントに達するまで に層間変形が大きくなることで,接合部(open side)が大きく変形し,ほぼピン状態となるこ とが予想される。結果として図-20の場合より, さらに架構の保有耐力 Q が減少する。このよ うに接合部変形の影響により設計段階で想定し た RC 架構の保有耐力を実現できない場合が存 在すると考えられる。

6. まとめ

本論では各接合部の挙動に着目して, 接合部 の変形が RC 架構に及ぼす影響を実験的・解析 的に検討し, 以下の知見が得られた。

- 1. 靱性指針式では L 形柱梁接合部の強度を精 度良く算出することができない。
- 2. 接合部(open side)の変形により, 接合部の剛 接状態が緩和されることで, 梁端(open side) でのモーメントが低下し, 想定した保有耐力 を実現できない場合がある事を示した。
- 3.2次元 FEM 解析では、本実験で生じた接合部 (open side)の変形を考慮することが難しい。

【謝辞】本研究において使用した高強度補強筋は, 高周波熱錬株式会社より提供していただき,ここ に厚く謝意を示します。

【参考文献】

 日本建築学会:鉄筋コンクリート造建物の靱 性保証型耐震設計指針・同解説,1997.7

日本建築学会:鉄筋コンクリート構造計算規準・同解説,1999.11

3) 青田晃治ほか:最上階柱梁接合部におけるプレート定着工法に関する研究,コンクリート工学 年次論文集, Vol. 23, No. 3, pp. 391-396, 2001

4) DIANA User's Manual-7, Nonlinear Analysis, June. 23, 2000

5) 藤井栄,森田司郎:異形鉄筋の付着割裂強度 に関する研究,日本建築学会論文報告集,Vol.324, pp.45-53,昭和58年

 6) 森田司郎,角徹三:繰り返し荷重下における 鉄筋とコンクリート間の付着に関する研究,日本 建築学会論文報告集, Vol. 229, pp. 15-24,昭和50年