# 論文 段差部を鉄筋で補強した PC 合成スラブの実験的研究

### 岩原 昭次\*1・山下 正吾\*2・岡本 和義\*3

**要旨**:2 枚の埋設型枠を段差状に敷き、配筋を施し、またその段差部を含めて場所打ちコンク リートを打設して一体化する PC 合成スラブについて、配筋の違いによる耐力・破壊性状を明 らかにした。試験体は全部で4体である。3体は段差部の埋設型枠の形状と配筋方法をパラメ ータとしたプレストレスト合成スラブであり、1体は段差を有する場所打ちコンクリート一体 式スラブである。段差部を場所打ちコンクリートで打設した場合の段差付き合成スラブの耐 力は、場所打ちコンクリートー体式スラブの場合と同程度以上となったなどの知見が得られ た。

キーワード: 合成スラブ, 段差, 配筋, 実験, 耐力

### 1. **はじめに**

2. 実験概要

2.1 試験体

近年、水周りなどを効果的に納めるために、ス ラブに段差部を設けることが多くなっている。す でに、PC 合成スラブにおいては、段差部で上下 に互い違いにつなげた埋設型枠をプレキャスト コンクリートで一体化させた板の上に場所打ち コンクリートを打設する構造形式のものが実用 化されている<sup>1,2)</sup>。ここでは、このような段差部を 有するプレキャストコンクリート板を用いるの ではなく、2枚の埋設型枠を段差状に敷き、配筋 を施し、またその段差部を含めて場所打ちコンク リートを打設して一体化する PC 合成スラブにつ いて、配筋の違いによる耐力・変形性状を明らか にすることを目的とする。

### 2.1.1 試験体の種類

試験体は全部で4体である。4体の試験体とも 外観寸法は同一である。このうち3体は段差部の 埋設型枠の形状と配筋方法をパラメータとした プレストレスト合成スラブであり、1体は段差を 有する場所打ちコンクリートー体式スラブであ る。

試験体の種類を、**表**-1 に示す。また、試験体の 寸法を図-1 に示す。

試験体に埋め込まれている埋設型枠の構成と 形状寸法を図-2 に示す。

埋設型枠にはプレテンション方式でプレスト レスが導入されている。緊張力の大きさは応力レ ベルで PC 鋼より線の降伏点応力度の 8 割とした。 即ち、使用する PC 鋼より線の品質は SWPR7AN、降 伏点応力度規格値は 1471MPa(15000kgf/cm<sup>2</sup>)であ るので、目標とする緊張力の大きさは応力レベル

| 試験  | 断面の         | スラブ厚 | 埋設型枠の最  | 中央段差部    | 支持条件 | 内法スパンあるいは  | 備考  |
|-----|-------------|------|---------|----------|------|------------|-----|
| 体名  | 種類          | (cm) | 高高さ(cm) | 高さ×幅(cm) |      | 支持点間距離(cm) |     |
| FS1 |             |      |         |          |      |            |     |
| FS2 | 合成          | 20   | 13      |          |      |            | 中央部 |
| FS3 |             |      |         | 20 × 50  | 両端固定 | 450        | に   |
| FSN | 場所打ち<br>一体式 |      |         |          |      |            | 段差  |

表-1 試験体の種類

\*1 崇城大学助教授 工学部建築学科 工博 (正会員)

\*2 (株)富士ピー・エス 建築部 部長 (正会員)

\*3 (株)富士ピー・エス 建築技術部 副部長





14001

図-2 埋設型枠の構成と形状タイプ

で次のような値とした。

目標とする応力レベル=0.8×1471=1177MPa 実際には、圧力計の読み値で 1224.2MPa/1 本当た りとなった。

FS1 と FS2 の2 試験体は同じ形の 埋設型枠を上下方向に 70mm のあき を設け、長さ方向に 50mm 重ねてい る。FS3 では段差部で長さ方向に 400mm 重ねている。上段部における 埋設型枠は段差部側の左右のフラン ジ部分を長さ350mmにわたって、下 段部における埋設型枠は、段差部側の 埋設型枠のリブ部分を長さ 450mm

にわたって 50mm を削ってある(すなわち、埋設 型枠の高さは 80mm)。FS1、FS 2 および FS 3 とも段差部における場所打ちコンクリートと埋 設型枠との剥離を防ぐために、上段部と下段部の 両埋設型枠に M16 のインサートを埋め込んでい る。

000

| 材令<br>(日) 養生<br>種別 圧縮強度(上段)<br>ヤング係数(中段)<br>最大歪(下段) 割裂引<br>張強度 スラ<br>ンプ<br>(m) 材令<br>(日) 養生<br>種別 圧縮強度(上段)<br>ヤング係数(中段)<br>最大歪(下段) 割裂引<br>張強度 スラ<br>ンプ<br>(m)   100 蒸気 62.69 4.9 5 72 気中 30.8 2.7 17 | プレキャストコンクリート |          |                                   |            |                  | 場所打ちコンクリート |          |                                       |            |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------------------------|------------|------------------|------------|----------|---------------------------------------|------------|------------------|
| 62.69   30.8     100 蒸気   36.5   4.9   5   72   気中   30.8   2.7   17     0.244   0.244   5   72   気中   0.224   2.7   17                                                                              | 材令<br>(日)    | 養生<br>種別 | 圧縮強度 (上段)<br>ヤング係数(中段)<br>最大歪(下段) | 割裂引<br>張強度 | スラ<br>ンプ<br>(cm) | 材令<br>(日)  | 養生<br>種別 | 圧縮強度(上段)<br>ヤング係数( 中段 )<br>最大歪 ( 下段 ) | 割裂引<br>張強度 | スラ<br>ンプ<br>(cm) |
|                                                                                                                                                                                                      | 100          | 蒸気       | 62.69<br>36.5<br>0.244            | 4.9        | 5                | 72         | 気中       | 30.8<br>24.9<br>0.224                 | 2.7        | 17               |

表-2 コンクリートの機械的性質

(注1) 単位 圧縮・割裂引張強度:MPa ヤング係数:GPa 最大歪:%

(注2) 材令はは載荷実験時材令

表-3 鋼材の機械的性質

| 種別         | PC 鋼 7 本より線      | 鉄筋         |            |  |  |  |  |
|------------|------------------|------------|------------|--|--|--|--|
| 品質         | SWPR-7AN 9.3mm   | D13-SD295A | D10-SD295A |  |  |  |  |
| 標準直径(mm)   | 9.3              | D13        | D10        |  |  |  |  |
| 公称断面積(cm²) | 0.5161           | 1.27       | 0.71       |  |  |  |  |
| 降伏点応力 MPa  | 1717             | 350.8      | 348.6      |  |  |  |  |
| ヤング係数GPa   | 193              | 177        | 187        |  |  |  |  |
| 最大引張強度 MPa | 1821             | 506.0      | 488.1      |  |  |  |  |
| 降伏点歪(%)    | 1.11(残留歪0.2%の場合) | 0.220      | 0.205      |  |  |  |  |
|            |                  |            |            |  |  |  |  |

(注1) PC 鋼より線はミルシートによる。



**図**-3 試験体加力図

### (2) 各試験体の配筋

FS1 と FS3 は配筋方法が同じで、段差部の場所 打ちコンクリート部分に上段部と下段部の鉄筋 を定着させる他に、ベンド筋を併用して上段部と 下段部の場所打ちコンクリート部分をつないで いる。FS2 はベンド筋の代りに、段差部近辺に設 けた上段部と下段部の下端筋を段差部の場所打 ちコンクリート部分に定着させる配筋である。場 所打ちコンクリート一体式スラブである FSN の 配筋は段差があるスラブに対する通常のベンド 筋を用いた場合のものである。なお、FS1 とFS3の違いは埋設型枠の段差側の形状

にある。

### 2.3 载荷方法

載荷は図-3 に示すように、中央部1点 集中荷重とし、支持条件は両端固定とし た。

載荷は一方向2サイクルとした。1回目 のサイクルでは、ひび割れ発生後約20kN まで載荷して除荷した後、2サイクル目で 最大荷重まで載荷した。

### 2.4 使用材料の機械的性質

埋設型枠用の早強コンクリートと、場所打ち コンクリート部分用の普通コンクリートの機械 的性質を表-2 に、PC 鋼より線(7本より)と鉄 筋の機械的性質を表-3 に示す。

# 3. 実験結果

# 3.1 荷重 たわみ関係

各試験体の荷重-たわみ関係を図-4 に示す。また主な荷重点とたわみ値を表-4 に示す。ただし、たわみは支柱撤去時のたわみを基準に表してある。

| 試験体名 |         | 端部ひび割れ発生 | 端部鉄降伏時 | 中央部鉄筋降伏時など | 最大荷重時 |
|------|---------|----------|--------|------------|-------|
|      |         | 時        |        |            |       |
| FS1  | 荷重(kN)  | 8.82     | 55.96  | 61.94      | 68.11 |
|      | たわみ(mm) | 0.95     | 23.34  | 43.17      | 95.83 |
| FS2  | 荷重(kN)  | 9.80     | 59.10  |            | 64.29 |
|      | たわみ(mm) | 0.72     | 29.73  |            | 57.52 |
| FS3  | 荷重(kN)  | 9.31     | 67.03  | 71.83      | 81.34 |
|      | たわみ(mm) | 0.98     | 14.50  | 23.31      | 93.72 |
| FSN  | 荷重(kN)  | 8.43     | 56.07  | 54.10      | 69.29 |
|      | たわみ(mm) | 0.90     | 17.67  | 16.63      | 72.28 |

表-4 主な荷重とたわみ

: 鉄筋は降伏せず

### 表-5 実験値と計算値の比較(実験値と計算値の単位は kN)

| ≐≭≣≏ | 計算値      |       | 実験値      |       |       | 実験値/計算値     |         |         |
|------|----------|-------|----------|-------|-------|-------------|---------|---------|
| 小歌   | 端部ひび割れ   | 降伏荷重  | 端部ひび割れ   | 降伏荷重  | 最大荷重  | 端部ひび割れ      | 降伏荷重    | 最大荷重    |
| 冲石   | 発生荷重(A1) | (A2)  | 発生荷重(B1) | (B2)  | (B3)  | 発生荷重(B1/A1) | (B2/A2) | (B3/A2) |
| FS1  |          |       | 8.82     | 61.94 | 68.11 | 1.08        | 1.37    | 1.51    |
| FS2  | 8.14     | 45.24 | 9.80     |       | 64.29 | 1.20        |         | 1.42    |
| FS3  |          |       | 9.31     | 71.83 | 81.34 | 1.14        | 1.59    | 1.80    |
| FS   | 8.14     | 46.67 | 8.43     | 54.10 | 69.29 | 1.04        | 1.16    | 1.48    |
| Ν    |          |       |          |       |       |             |         |         |

(注 1) ひび割れ荷重算定にあたって、曲げ強度は次式によった:  $cr=0.56 \times (1.6/1.8) \sqrt{F_c}$ 

(注 2) 端部と中央部の降伏曲げモーメントは次式によった:  $M_y = 0.9a_t s_y d$ 



図-4 荷重 たわみ関係(支柱撤去後基準) また、表-5 に計算値と実験値の比較を示す。端部 ひび割れ荷重の計算にあたっては自重の影響を 除き、また、断面2次モーメントは場所打ちコン クリートー体式断面での値を用いた。端部ひび割 れ荷重の実験値は計算値に対して1.04~1.20倍 であり、実験値は計算値に近似しているといえる。 降伏曲げモーメントの計算にあたっては、端部で は場所打ちコンクリートー体式梁の終局曲げモ ーメント計算式を用いて求めた。また、中央部で は危険断面が上段部のスラブと段差部の界面 である加力点位置にあって、また段差部が場所 打ちコンクリートであることより、端部と同様 に場所打ちコンクリートー体式梁の終局曲げ モーメント計算式を用いて求めた<sup>33</sup>。この端部 と中央部の降伏曲げモーメントを用いた計算 した降伏荷重は、表-4 中の中央部鉄筋降伏時 (この時、既に端部鉄筋は降伏している)の荷重 と比較できる。FSN 試験体の場合で、降伏荷 重の実験値は計算値の 1.16 倍で実験値は計算 値に近似した。FS1 と FS3 の場合、降伏荷重 の実験値はそれぞれ計算値の 1.37 と 1.59 倍と

なり、また合成スラブである FS1、FS2 および FS3 の最大荷重も降伏荷重計算値の 1.42~1.80 倍を示した。特に、FS3 試験体は段差部で埋設型 枠を積層状に重ねており、この効果が降伏荷重と 最大荷重の実験値に現われている。FS2 試験体は 中央部鉄筋降伏時の荷重を測定できなかったが、 端部鉄筋降伏時の荷重は FSN 試験体の場合の約 5%高くなっているので中央部の降伏荷重は FSN





と同程度と推測できる。最大荷重はベンド筋が用 いられている FS1 試験体と 90 度折れ曲げ筋で段 差部に定着した FS2 試験体は同程度であった。以 上のことから、段差部を場所打ちコンクリートで 打設した場合の段差付き合成スラブの耐力は場 所打ちコンクリートー体式スラブの場合と同程 度以上あるといえる。

### 3.2 ひび割れ

最終ひび割れ状況を図-5 に示す。 各試験体の最終破壊状況は次の通りである。 (1)FS1:荷重点下の入り隅部から上方に向かうひ び割れのひび割れ幅が拡大するとと もに荷重点付近から、段差部下方に向 かう斜めひび割れが発生するととも に荷重点付近のコンクリートが圧壊 することにより、最終状態に至った。 (2)FS2:固定端部の鉄筋が降伏後、荷 重点下の入り隅部から上方に向かう ひび割れのひび割れ幅が拡大すると ともに荷重点付近から、段差部下方に 向かう斜めひび割れが発生し、荷重点 付近のコンクリートが圧壊すること により、最終状態に至った。

(3)FS3:中央部下面の入り隅部上面の プレキャストリブの突端付近にひび 割れが発生し、その後上面入り隅部か

ら発生したひび割れがそのリブに平行に生じて いたひび割れと繋がり、最終耐力時にはそのリブ 上面におけるコンクリートの圧壊となった。 (4)FSN:最終耐力は、上面入り隅部の真下に発生 していたひび割れが、進展し上面入り隅部でコン クリートが圧壊することにより決まった。

FS2 と FS3 の合成スラブの最終破壊は、下面入 り隅部の上部コンクリート部分の圧壊であった が、場所打ちコンクリートスラブ FSN は、上面 入り隅部のコンクリートの圧壊であった。

3.3 段差部付近の PC 鋼より線歪

図-6 に加力点直下と、段差部と下段部スラブの 界面にある FS1、FS2 および FS3 試験体の PC 鋼より線の歪を示す。

図中実線で示す、加力点直下に位置する PC 鋼 より線の歪(P<sub>2</sub>)は、荷重約 40KN あたりまで約 80 ~150 µ となっており、FS1、FS2 および FS3 の 3 試験体とも大きな相違は見られない。これは上 段部のスラブの埋設型枠が段差部で架かり代が 30mm たらずであること、あるいは積層状になっ ているとしても、PC 鋼より線に耐力を負担させ ることができないことを示している。

3.4 鉄筋歪

図-7 と図-8 に端部上端筋と中央部加力点直下の下端筋の歪を示す。

端部と中央部の鉄筋歪とも降伏点 歪に達した 後、急激に増大している。これは、端部および中



央部ともに歪が降伏点に達した後は曲げモーメ ントの増加は期待できないことを示している。ま た、中央部の鉄筋歪は、特に FS1 と FS2 試験体 について最大荷重に達する直前で引張り鉄筋で ある下端筋の歪が反転しているが、これは埋設型 枠の架かり代が 30mm と小さいことと、埋設型枠 と場所打ちコンクリート部分とのずれが原因と 考えられる。

### 3.4 鉄筋歪とひび割れ幅

図-5 に示す端部と中央部の測定位置(図中の 印)における鉄筋歪とひび割れ幅の関係を図-9 に示す。端部と中央部ともに鉄筋歪が約 1200 µ 程度(応力レベルで 250MPa)でせいぜい 0.2 ~ 0.4mm 程度となっている。また、鉄筋歪が 1500 µを超えると急激にひび割れ幅を増大している。 このことから、従来から指摘されているように、 段差がない場所打ちコンクリートー体式スラブ の場合と同じ傾向にあり、長期許容応力度レベル でひび割れ幅が 0.3mm 程度という結果になって いる。

# 4. **まとめ**

段差部の場所打ちコンリート部分で鉄筋補強 した、段差を有する合成スラブの耐力などについ て以下の知見が得られた。 段差部を場所打ちコ ンクリートで打設した場合の段差付き合成スラ ブの耐力は、場所打ちコンクリート一体式スラブ の場合と同程度以上あった。特に、段差部で埋設 型枠を積層状に重ねる場合には、降伏荷重と最大 荷重はともに場所打ちコンクリートー体式スラ ブに比べて 1.2~1.3 倍大きくなった。 鉄筋応力 レベルで 250MPa で端部と中央部のひび割れ幅 はこの種の合成スラブにおいてもせいぜい 0.2~ 0.4mm 程度であり、段差がない場所打ちコンクリ ートー体式スラブの場合と同じ傾向を示した。

### [参考文献]

1) 山田宏至・小森清司ほか:段差付逆T形PC型枠を用 いた合成床スラブの耐力と破壊性状に関する実験的研究, コンクリート工学年次論文報告集, Vol.18,No.2, PP.1119-1124,1997

2) 竹下 修・小森清司ほか:段差付合成床スラブに関す る研究,コンクリート工学年次論文報告集,Vol.19,No.2, PP.1079-1084,1996

3) 日本建築学会:鉄筋コンクリート構造計算基準・同解 説,丸善, PP.615-616,1998.2