論文 高性能コンクリートの付着性状に関する実験的研究

吉田 藍子*1・松本 至*2・中野 克彦*3・松崎 育弘*4

要旨:本研究は,超軽量コンクリート,繊維補強超軽量コンクリート,石炭灰による高強度 コンクリート等の,新しく開発された高性能の構造用コンクリートと異形鉄筋の付着性状を 把握するための基礎資料を得ることを目的としている。従来,RC部材の付着割裂強度の評 価式の基になっているキャンチレバー型付着実験を行うことで,個々のコンクリートの特異 な材料特性が付着割裂強度に及ぼす影響を顕在化し,評価式の適用性について示している。 キーワード:超軽量骨材,石炭灰を使用した人工骨材,ビニロン繊維,付着割裂強度

1. はじめに

コンクリートの気乾単位容積質量が 1.4t/m³ 以下の超軽量コンクリートに使用される超軽量 骨材は,原料として抗火石,膨張頁岩,真珠岩 などを用いているが,その超微紛砕及び発泡・ 焼成技術などの進歩により高品質な骨材製造が 可能となっている¹⁾。また,石炭灰を使用した 人工骨材の研究が進められ,製造条件を適切に 制御し,骨材の組織を緻密化した高強度人工骨 材が開発されている²⁾。これらの高性能コンク リートの特徴を生かした RC 造建物の構造用コ ンクリートとしての利用が期待されている。

著者らは,これらのコンクリートを構造用部 材として利用するための研究³⁾を行う一方で, 人工骨材を用いたコンクリートの引張特性を改 善した繊維補強コンクリートを用いた研究も行 っている⁴⁾。

本研究では,新しく開発された各種のコンク リートを構造用コンクリートとして利用してい くにあたり,個々の材料特性が最も影響を及ぼ すと考えられる,異形鉄筋との付着性状を把握 するための基礎資料を得るため、特に付着割裂 強度について明確にすることを目的としている。 従来,RC 部材の付着割裂強度の評価式の基に なっているキャンチレバー型の付着実験を行う

- *1 東京理科大学 工学部建築学科(正会員)
- *2 東京理科大学大学院 工学研究科建築学専攻(正会員)
- *3 東京理科大学助手 工学部建築学科(正会員)
- *4 東京理科大学教授 工学部建築学科 工博(正会員)

ことにより,個々のコンクリートの特異な材料 特性が付着割裂強度に及ぼす影響を顕在化し, 評価式の適用性について報告する。

- 2. 実験概要
- 2.1 試験体

図 - 1 に試験体形状 表 - 1 に試験体要因一覧 を示す。試験体は文献 5 に基づいて計画し,異 形鉄筋の付着長さは 400mm で,主筋の公称径 の 21 倍とした。上端側,下端側ともに4本の異 形鉄筋を一列に配置し,サイドスプリット型の 付着割裂破壊を想定した。

試験体要因は,コンクリートの種類,せん断 補強筋比(pw=0%,0.24%,0.47%,0.59%,0.95%), せん断補強筋降伏強度(wy),鉄筋位置(上端 筋,下端筋)である。要因としたコンクリート の種類を以下に示す。

SL-A: 真珠岩系の造粒型の超軽量骨材を 用いた超軽量コンクリート。(SL-A30: 気乾単 位容積質量が 1.2t/m³ 程度で設計基準強度が 30N/mm² 程度, SL-A50: 気乾単位容積質量が 1.5t/m³程度で設計基準強度が 50N/mm²程度)

SL-N: 堆積粘土系の非造粒型の超軽量骨 材を用いた超軽量コンクリート。(SL-N30: 気 乾単位容積質量が 1.2t/m³ 程度で設計基準強度 が 30N/mm²程度)

SL-V: SL-A に長さ 30mm, 直径 0.4mm のビニロン繊維(引張強度 880N/mm², ヤング係 数 29.4kN/mm²)を体積比で 1.0%混入した繊維 補強超軽量コンクリート。(SL-V50: 気乾単位 容積質量が 1.5t/m³ 程度で設計基準強度が 50N/mm²程度)

TL:石炭灰を主原料とした造粒型の高強 度人工骨材を用いたコンクリート。(TL-36:気 乾単位容積質量が 2.0t/m³程度で設計基準強度 が 36N/mm²程度,TL-60:気乾単位容積質量が 2.0t/m³程度で設計基準強度が 60N/mm²程度)

NC:硬質砂岩砕石(普通骨材)を用いた 普通コンクリート(NC-24N,NC-24H,NC-42H, NC-60H:設計基準強度がそれぞれ 24,24,42, 60N/mm²程度)

なお,異形鉄筋は D19 のネジ節鉄筋に焼き入 れ加工を施し,降伏強度(__y)を 1000N/mm² 程度としている。また,せん断補強筋は D10 異 形鉄筋を用いており,NC-24H,NC-42H,NC-60H, SL-A50, SL-V50 シリーズでは_{w_y}= 785N/mm² 級の高強度せん断補強筋,それ以外は_{w_y}= 295N/mm²級のせん断補強筋を用いている。

2.2 使用材料の材料特性

表 - 2 に使用したコンクリートおよび鋼材の 材料試験結果,図-2 に使用したコンクリート の圧縮応力度()とひずみ度()との関係 の一例を示す。

超軽量コンクリート SL-A, SL-N, SL-Vの -関係は, NC と比較してヤング係数が小さく, 最大圧縮応力度までほぼ直線的に上昇している。

一方,TLの - 関係は,NCと比較してヤング係数がやや小さく,最大圧縮応力度までNCとほぼ同様な曲線となっている。

図 - 3 は割裂強度($_1$)と圧縮強度($\sqrt{_B}$) との関係を示したものである。 $_1 O \sqrt{_B}$ に対す る比は, NC が 0.5 程度であるのに対し, SL-A, SL-N で 0.35 程度, TL で 0.50 程度となっている。 また, SL-A を繊維補強した SL-V では 0.5 程度

表 - 1 試験体要因一覧

試験体	コンク	せん断補強筋比 (p _w) ^{*1}						
種類	種類	Fc	0.0	0.24	0.47	0.59	0.95	
		N/mm ²	%	%	%	%	%	
NC-24N	NC	24		-		-	-	
NC-24H	NC	24				-		
NC-42H	NC	42				-		
NC-60H	NC	60				-	-	
SL-A30	SL-A	30		-		-	-	
SL-A50	SL-A	50				-		
SL-N30	SL-N	30				-		
SL-V50	SL-V	50				-		
TL-36	TL	36						
TL-60	TL	60		-	-	-	-	
*1) NC-24H , NC-42H , NC-60H , SL-A50 , SL-V50								
のせん断補強筋は _{w y} =785 級 , その他は _{w y} =295								
級の鉄筋を用いた。								
*2)全ての訪	*2)全ての試験体で上端・下端の主筋について実験した。							

表-2 材料試験結果一覧

コンクリート	比重	圧縮強度	割裂強度	ヤング係数*ュ			
		(N/mm^2)	(N/mm^2)	(kN/mm^2)			
NC-24 N	2.30	24.7	2.52	25.0			
NC-24 H	2.25	23.4	2.43	24.8			
NC-42 H	2.22	36.0	2.72	32.0			
NC-60 H	2.43	73.3	4.44	39.2			
SL-A30	1.17	35.3	2.19	12.4			
SL-A50	1.46	51.4	2.38	18.2			
SL-N30	1.17	31.2	2.06	12.1			
SL-V50	1.55	60.4	3.36	20.0			
TL-36	1.97	38.2	3.12	28.3			
TL-60	2.06	62.9	4.29	27.8			
鉄筋	種類	降伏強度	引張強度	ヤング係数			
		(N/mm^2)	(N/mm^2)	(kN/mm^2)			
主筋	D19	946	1080	176			
せん断	D10	341	439	197			
補強筋		818	916	181			
*1) 圧縮強度の 1/3 強度時の割線剛性							

に上昇している。

2.3 加力方法

加力はキャンティレバー型の引抜き試験法で,

初期段階において4本の鉄筋に同一の力を与え, 一方向単調載荷とした。その際,荷重制御で加 力を行ったが,それぞれの鉄筋の載荷端側付着 領域外に貼ったひずみゲージの値をモニターし つつ,4本の主筋に均等に荷重が分配されるよ うに微調整を加えた。上端筋載荷後に試験体を 反転させ,下端筋についても同様な載荷を行っ た。測定は荷重値,荷重端・自由端すべり量お よび鉄筋のひずみ度について行った。

実験結果および検討

3.1 最大耐力と破壊状況

(1) 上端筋と下端筋の付着割裂耐力の関係

図 - 4 に上端筋の最大耐力(P_{max})と下端筋の P_{max}との関係を示す。

P_{max}の下端筋の上端筋に対する比率は,NC シリーズで1.1~1.4倍,SL-A およびSL-Nシリ ーズで0.8~1.1倍,SL-Vで0.8~0.9倍,TLシ リーズで1.0~1.3倍程度となっている。本実験 範囲では,上端筋と下端筋の付着割裂耐力の関 係は,NC,TLシリーズでは従来の普通コンク リートの実験で示されている関係と等しくなっ ているが,超軽量コンクリートを用いたシリー ズ(SL-A,SL-N,SL-V)では上端筋と下端筋 において顕著な耐力差はみられない。これらの 実験結果は,今後のデータの蓄積が必要であり, 以後の検討においては,上端筋のみの実験結果 を検討するものとする。

図 - 4 P_{max}の下端筋と上端筋との関係

(2) _Bとpwの影響

図 - 5 に上端筋の P_{max} とコンクリート強度
(_B)との関係,図 - 6 に上端筋の P_{max} とせん
断補強筋比(p_w)との関係を示す。

NC, SL および TL シリーズともに , $_{\rm B}$ およ

図-7 最大耐力時の破壊状況

び pwの上昇に伴い Pmax が上昇している。さら に,pwの上昇率に対する Pmaxの上昇率は, B が同一であればほぼ等しくなり, B が大きい ほど大きくなる傾向がある。

(3)破壊状況

図 - 7 に最大耐力時の破壊状況の一例を示す。 すべての試験体において,主筋に沿った方向 に付着割裂ひび割れが入り,サイドスプリット 型の付着割裂破壊で耐力低下を起こした。コン クリート種類の違いによる,ひび割れパターン の違いは見られなかったが,全ての人工骨材お よび B= 73.3N/mm²の普通骨材は付着割裂ひび

3.2 付着割裂強度

割れにより割裂していた。

(1)横補強筋が無い場合の付着割裂強度 図 - 8 に横補強筋が無い試験体の上端筋 1 本 あたりの付着割裂強度($_{b,max}$),図 - 9 に $_{b,max}$ と $_{B}$ との関係を示す。 $_{b,max}$ は NC,SL,TL ともに $_{B}$ の上昇とともに大きくなっており, $\sqrt{_{B}}$ とほぼ比例関係にあると考えられる。 $_{B}$ がほぼ同一であるコンクリート同士の $_{b,max}$ を 比較すると NC に対して SL-A SL-N で約 70%, SL-V,TL でほぼ等しくなっており,2.2 節で示 した $_{B}$ と $_{L}$ との関係に等しくなっている。し たがって,コンクリート負担分の付着割裂強度 は,既往の付着割裂強度($_{co}$)にコンクリ

ート種類による係数(。)を乗じた(1)式で 表される。

$$\tau_{co} = \alpha_c (0.096 \cdot b_i + 0.133) \sqrt{\sigma_B}$$
(1)

[*係数は SI 単位にて修正]

ただし, 。はコンクリート種類による係数で あり, $\sqrt[4]{\sqrt{B}}$ の普通コンクリートの $\sqrt[4]{\sqrt{B}}$ に 対する比である。(=1:NC, TL, SL-V, = 0.7: SL-A, SL-N)また, $b_i = b_{si} = b/(N \cdot d_b)-1.0$, N: 主筋本数, b:部材幅, d_b :主筋径。

図 - 9 中に計算値が示されており,妥当に評 価できていると考えられる。

(2) 横補強筋による付着割裂強度の増分

図 - 10 に外側の上端筋(図 - 1 の A 鉄筋)1 本あたりの付着応力度($_{b}$)と自由端すべり量 ($_{Sf}$)との関係,図 - 11 に横補強筋による付着 割裂強度の増分($_{st}/\sqrt{_{B}}$)と p_{w} との関係を 示す。なお, $_{st}$ は,各鉄筋の $_{b,max}$ から(1) 式より算出した $_{co}$ を差し引いた値とした。

コンクリートの種類および強度によらず,横 補強筋の無い場合の付着割裂強度時付近から自 由端すべり量が生じ始め,pwが大きくなるほど _{b,max},Sf および剛性が大きくなる傾向がみられ る。横補強筋量の増加に伴い付着割裂強度の上 昇がみられ,付着割裂強度時のすべり量も多く なっている。

図 - 11 の a) は外側上端筋, b) は内側上端筋 の $s_{t}/\sqrt{B} e_{p_{w}} e_{o}$ との関係を示したものである。 図中には既往の付着割裂強度評価式 ⁵⁾による計 算値が示してある。計算値は,外側筋および内 側筋について, p_{w} の上昇率に対する s_{t}/\sqrt{B} の 上昇率を適切に表現している。

したがって,横補強筋による負担分の付着割 裂強度は,(2),(3)式に示す既往の付着割裂強 度算定式を準用できるものと考えられる。

[横補強筋が直接かかっている上端筋]

$$\tau_{st} = 2.49 \cdot p_w \cdot b / d_b \cdot \sqrt{\sigma_B} \tag{2}$$

[横補強筋が直接かかっていない上端筋]

$$\tau_{st} = 1.20 \cdot p_w \cdot b / d_b \cdot \sqrt{\sigma_B} \tag{3}$$

[*係数は SI 単位にて修正]

ただし , p_w: せん断補強筋比 , b : 部材幅 , d_b : 主筋径。

(3) 付着割裂強度の評価

図 - 12 に式(1)~(3)により算出した付着

図 - 10 付着応力度と自由端すべり量との関係

割裂強度計算値と実験値との比較を示す。計算 値は実験値を適切に表現していることがわかる。 このことより,コンクリート種類が異なる場合 でも,コンクリート材料の圧縮強度と割裂強度 との関係が把握できれば,異形鉄筋の付着割裂 強度が評価できると考えられる。 4. まとめ

上端筋の付着割裂強度について以下のような 結果を得た。

(1)本実験で用いた各コンクリート材料の
の√B に対する比は,普通コンクリートが0.5
程度であるのに対して,超軽量骨材を用いたコンクリートで0.35 程度,ビニロン繊維補強超軽
量骨材を用いたコンクリートおよび石炭灰を用いた高強度骨材を用いたコンクリートで0.5 程
度であった。

(2)横補強筋がない場合の付着割裂強度は,各種コンクリート材料の圧縮強度と割裂強度との関係が把握できれば,既往の付着割裂強度評価式により評価できる。

(3)横補強筋による付着割裂強度の増分は,コ ンクリートの種類に係わらず,既往の付着割裂 強度式により評価できる。

(4)付着割裂強度は,上記(2)で算出したコンクリート負担分の付着割裂強度に,(3)で算出した横補強筋による付着割裂強度の増加分を 累加することにより評価できる。

謝辞 本研究にあたり,清水建設技術研究所, 電源開発および太平洋セメントの皆様にご協力 頂きました。ここに記して感謝の意を表します。 参考文献

- 1) 九々正武,鈴木忠彦,坂口昇:超軽量骨材 (構造用人工軽量骨材)を使用した軽量コンクリートの物性,JCI 軽量コンクリートの 性能の多様化と利用の拡大に関するシンポ ジウム論文集,pp.5-10,2000.8
- 2) 石川嘉崇,早川光敬,笹原厚,安田正雪: 石炭灰を主原料とした高強度人工骨材を用いた硬化コンクリートの性質,JCI 軽量コンクリートの性能の多様化と利用の拡大に関するシンポジウム論文集,pp.17-22,2000.8
- 3) 松本至,熊澤敬輔,松崎育弘,中野克彦: 超軽量コンクリートと高強度せん断補強筋 を用いた柱部材の構造性能に関する実験研 究,JCI年次論文集 23-3, pp.229-234, 2001.7
- 松崎育弘,松本至,熊澤敬輔,中野克彦: 繊維補強超軽量コンクリートと高強度せん 断補強筋を用いた柱部材の構造性能に関す る実験研究,JCI 年次論文集 23-3,

pp.223-228, 2001.7

5) 藤井栄,森田司郎:異形鉄筋の付着割裂強 度に関する研究 第一報,日本建築学会構 造系論文集,第319号,pp.47-55,1982.9