論文 ビニル短繊維を混入した鉄筋コンクリート柱のせん断性能

小坂 英生*1・北山 和宏*2・岸田 慎司*3

要旨:ポリビニルアルコール(以下 PVA)短繊維を混入した鉄筋コンクリート(以下 PVA-FRC) 部材の基本的なせん断性状を把握するため、柱のせん断加力実験を実施した。PVA 短繊維の混 入はかぶりコンクリートの剥落を防止し、ひび割れ幅を抑制し、コアコンクリートを拘束する 効果があり、更に、ブリッジング作用によりひび割れ発生後も最大で引張強度の 1/2 程度まで 引張力を伝達してせん断耐力の増加に寄与した。

キーワード:短繊維補強コンクリート、柱、せん断、せん断抵抗機構

1 はじめに

PVA 短繊維をコンクリートに混入することで 有効破壊エネルギー等の各種破壊パラメータは無 混入よりも大きくなり、靭性向上に効果があるこ とが確認されており[1,2]、このようなコンクリー トを利用した PVA-FRC 部材の開発が期待される。 一方で、PVA-FRC と類似した短繊維補強セメント 複合材料と呼ばれる材料に関する研究が進み、そ の靭性に富んだ挙動が明らかにされつつある[3,4]。 しかしながら、粗骨材を含む PVA-FRC のような 材料の挙動はそれらとは異なるため、本研究では、 PVA-FRC 部材の基本的な力学特性および変形性 能を把握することを目的とし、柱の曲げせん断加 力実験を実施した。実験では、PVA 短繊維混入の 有無、コンクリート圧縮強度、横補強筋の有無、 軸力、軽量細骨材の使用の有無をパラメータとし て、PVA-FRC部材のせん断性状を明らかにするこ とを目指す。

2 実験計画

2.1 試験体および加力方法

図-1 に試験体形状、表-1 に試験体一覧を示す。 試験体は実大の約 1/3 スケールを想定した正方形 柱とし、柱せいが 250mm、せん断スパンは 375mm (a/D=1.5)とした。主筋および横補強筋の配筋は、 全ての試験体においてせん断破壊先行型の破壊モ ードとなるように決定した。表-2 に使用コンクリ

(a) NO.1,2,4,5,6 (c) Section NO.3 図-1 試験体配筋図

☆-1 →→一次 中見								
		1	2	3	4	5	6	
	種類	PVA-FRC	PVA-FRC	PVA-FRC	PVA-FRC	<u>RC</u>	PVA-FRLCC	
	_ 圧縮強度 [MPa]	39.7	<u>76.8</u>	40.5	40.5	37.1	42.1	
	引張強度 [MPa]	3.4	5.0	3.4	3.4	2.8	2.7	
	ヤング率 [GPa]	30.0	33.5	29.0	29.0	27.6	16.1	
	16-D13							
主筋	降伏強度 [MPa]	885						
	引張鉄筋比 [%]	1.016						
	配筋	2-D6@100 - 2-D6@100						
補強筋	降伏強度 [MPa]	34	3.4	-		343.4		
	補強筋比 [%]	0.2	0.260		0.260			
· · · · · · · · · · · · · · · · · · ·	N [kN]	784	735	784	<u>-392</u>	735	833	
	軸 力 比 η	0.32	0.15	0.31	<u>-0.15</u>	0.32	0.32	

÷+ ₽4 /+

*1 大成建設株式会社 技術センター 建築技術研究所 工修 (正会員)

*2 東京都立大学大学院助教授 工学研究科建築学専攻 工博 (正会員)

*3 東京都立大学大学院助手 工学研究科建築学専攻 博士(工学) (正会員)

ートの調合を示す。使用したコンクリートはF35N、 F72N、35N、LF35Nの4種類である。実験に使用 した試験体は、F35N を使用し Pw=0.26%・圧縮軸 力比 (軸力を全柱断面積とコンクリート圧縮強 度で除したもの)を0.32としたNO.1を基準試験 体として、高強度コンクリート(F72N)を使用し た NO.2、せん断補強筋の無い NO.3、引張一定軸 力を加えた NO.4、繊維を混入しない普通コンクリ ート(35N)を使用したNO.5、骨材に軽量細骨材 のみを使用した PVA 短繊維補強セメント複合材 料(以下 PVA-FRLCC)の NO.6 である。なお、 繊維は PVA 短繊維を用い、繊維混入量は体積比で 1%とした。表-3 に PVA 短繊維の特性を示す。

加力には建研式試験装置を用い、パンタグラフ で上下スタブを平行に維持することによって逆対 称曲げせん断加力した。

2.2 せん断強度の推定

各コンクリートの荷重 - 開口変位関係を図-2に 示す。これは文献[3]に示されており、本研究と同 バッヂで混練したコンクリートを用いて 100x100 x400 mmの供試体を作成し、その中央部に 50mm の切り欠きをいれ、中央部の荷重と切り欠き部の 開口変位との関係を示したものである。RC の供 試体では最大荷重後に急激に荷重が低下したが、 PVA-FRCの供試体は最大荷重後も最大荷重の5割 以上の荷重を維持した。一般にコンクリートはひ び割れ発生後は引張力を負担しないと考えるが、 PVA 繊維を混入することでひび割れ後も引張力 を伝達することができる。よって、PVA-FRC 試験 体においては既往のせん断強度式を修正する必要

表-2 コンクリート配合表

		35N	F35N	F72N	LF35N
呼び強度	$[N/mm^2]$	35	35	72	35
粗骨材最大径	[mm]	20	20	20	-
スランプ	[cm]	18	5	15	5
空気量	[%]	3.5	3.5	3.5	3.5
水セメント比	[%]	57.0	57.0	29.5	28.0
細骨材比	[%]	50.3	50.3	42.3	-
ビニロン繊維	[%]	0	1	1	1
水	[kg/m ³]	168	168	175	203
セメント	[l/m ³]	93	93	187	196
シリカヒューム	[l/m ³]	-	-	-	48
細骨材	[l/m ³]	349	349	251	-
粗骨材	[l/m ³]	345	345	342	-
軽量細骨材	[l/m ³]	-	-	-	553
混和材	[%]	1.2	1.5	1.2	1.7

11	L L	N E	MEMIC		MX B/TITE O
0.66 mm	30.0 mm	1.3 g/cm^3	880 MPa	29.4 Gpa	6.0 %
5 4 3 - 4 - 4 - 7 - 1 0		High-str. P PVA-LFR(VA-FRC PVA-I	RC 開口変 RC	荷重 位
0	0	.2	0.4	0.6 0.8	1
			開日変位 [m	1mj = 88	上田広
凶-2	「台口」	ンクリー	・トの何重	1- 一 一 (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	21日係

ポリビニルアルコール短繊維の特性

がある。そこで、荒川 mean 式と終局強度指針[5] 式の中で補強筋の効果項にコンクリート引張割裂 強度の1/2を加えて、(1)~(4)式のように修正した。 $Q_{mean} = \{0.069p_t^{0.23}(B+18)/(a/D+0.12)\}$

$$+0.85\sqrt{p_w\sigma_{wy}}+0.5\sigma_{cr}+0.1$$
 ₀}bj (1)

Vu=Vt+Va				• • • • •	(2)
ここに、					
$Vt=bj_t\{p_w$	wy + 0.5	$_{cr}\cos^2$	}cot		(3)
$V_a = tan (1 - tan)$	hD	$_{\rm P}/2$			••••• (4)

衣-4 計昇編末一見										
試験体 No.			1	2	3	4	5	6		
曲げ終居	局強度時せん断力	Q _{mu}	[kN]	597	675	599	337	586	597	
せん断強度 荒	終局強度指針式 ^{注1}	Vu	[kN]	209	276	177	185	153	209	
	荒川mean式 ^{注2}	Q _{bumeam}	[kN]	238	447	282	229	203	238	
注1 立赴[5]⇒	は1 文献[5]式を修正] た木文中(2), (小式に上り質出, 注2) 芸川式を修正] た木文中(1)式に上り質出									

表-4	計	算結	果一	覧
-----	---	----	----	---

表-3

表-5 実験結果一覧									
試験体 No.			1	2	3	4	5	6	
曲げひび割れ	Qmc	[kN]	160	108	159	-	134	143	
せん断ひび割れ	Qsc	[kN]	246	264	233	-	206	143	
立 7 + + 7名 / 半 注3	Qy	[kN]	247	294	-	141	223	186	
副初降认	δy	[%]	0.77	0.80	-	1.00	0.65	0.50	
最大耐力	Qmax	[kN]	248	300	239	167	225	186	
	δmax	[%]	0.50	0.85	0.45	1.50	0.50	0.50	
限界変形時 ^{注4}	Qu	[kN]	198	240	191	133	180	149	
	δυ	[%]	1.30	1.00	0.60	3.00	1.10	1.20	

注3 部材降伏は、せん断補強筋が降伏歪みに達し、柱の層せん断力 - 層間変形角関係より剛性が低下する点を明記した。注4 限界変形時耐力は、 層せん断力 - 層間変形角関係上で各サイクルの最大荷重を結んだ包絡線より、せん断耐力が最大耐力の80%に低下した時の変形とした。

cot =min. $\{2.0, j_t/(D \tan)\}$,

$$\sqrt{v\sigma_{B}/(p_{w}\sigma_{wy} + 0.5\sigma_{cr}\cos^{2}\phi)} - 1 \}$$

tan = $\sqrt{(L/D)^{2} + 1} - L/D$
= {(1+cot²)(p_{w}wy + 0.5 crcos²)}/ B
= 0.7-B/200

上式中で、 *B*:コンクリート圧縮強度、 *cr*:コンク リート引張強度、*pi*:引張鉄筋比、*pw*:横補強筋比、 *wy*:横補強筋降伏応力度、 *o*:柱軸応力度、 :ト ラス角度、 :アーチ角度、*b、j、j、D、a/D* はそ れぞれ柱幅、応力中心間距離、主筋間距離、柱せ い、シアスパン比である。計算結果を表-4 に示す。 実験値と計算値の比較は 4.3 節にて後述する。

3 実験結果

3.1 破壊性状

いずれの試験体も主筋が降伏することなく、引 張軸力を導入した PVA-FRC 試験体(NO.4)はひ び割れの増加とともに徐々に横補強筋が降伏し最 大耐力に至ったためせん断引張破壊と判断し、他 の5体の試験体はいずれも最大耐力に達すると同 時に材端部圧縮域を結ぶ対角線上のせん断ひび割 れが発生し、横補強筋も同時に降伏して急激に耐 力が低下したことによりせん断斜張力破壊と判断 した。表-5に実験結果一覧、図-3に最終的なひび 割れ状況を、図-4にP- 効果を考慮した層せん 断力 - 層間変形角関係を示す。

3.2 ひび割れ状況

PVA 短繊維を混入した No.1,4,6 試験体は試験区 間全域に渡り多数のひび割れが分散して発生した が、急激に破壊した No.2,3 試験体はひび割れの本 数は少なかった。また、RC の No.5 試験体もひび 割れの本数は少なく、かぶりコンクリートの剥落 が顕著であった。No.1,5,6 試験体はまず柱中央部 に縦にせん断ひび割れが発生し、上下のヒンジ領 域に斜めせん断ひび割れが発生した。引張軸力を 導入した No.4 試験体を除く全試験体において、材 端部圧縮域を結ぶ対角線上のせん断ひび割れが大 きく支配的であった。

3.3 せん断耐力および変形性能

せん断耐力を比較すると、PVA-FRCのNo.1 試 験体はRCのNo.5 試験体よりも10%上回り、更 に、せん断補強筋比0%のPVA-FRCのNo.3 試験 体においてもせん断補強筋比0.26%のNo.5 試験 体を若干上回る結果となった。高強度PVA-FRC のNo.2 試験体のせん断耐力は、No.1 試験体と比 べ21%増加した。PVA-FRLCCのNo.6 試験体は No.5 試験体の83%のせん断耐力に留まった。また、 せん断耐力後の靭性能は、PVA-FRCのNo.1 試験 体はRCのNo.5 試験体と比較して優れていたが、 せん断補強筋比0%のPVA-FRCのNo.3 試験体、 および、圧縮基準強度72 MPaのPVA-FRCのNo.2 試験体は非常に脆性的な性状を示した。

3.4 主筋の応力度および付着応力度分布

最大耐力時の主筋の応力度分布および付着応力 度分布をそれぞれ図-5、図-6 に示す。主筋は全試 験体とも最後まで降伏しなかった。主筋の応力度 分布性状において、各試験体に差は見られなかっ た。付着応力度は No.2 を除く全試験体とも 2~3 MPa に達したが、終局強度指針[5]の解説に示され た算定式による付着割裂強度 5.6 MPa を大きく下 回った。No.2 試験体は最大で 6 MPa に達し、付着 割裂強度 6.5 MPa に近い値となった。全試験体と も最大耐力時の付着性状は良好に保たれており、 大きな差は現れなかった。

3.5 コンクリートの引張主歪み

コンクリートの引張主歪みは試験区間に設置し た変位計により算出した。変位計は試験区間を3 分割し上・中・下区間に設置し測定したが、中区 間の各正サイクルピーク時のコンクリート引張主 歪み推移を図-7 に示す。PVA-FRC の No.1 試験体 は最大耐力以降、層間変形角 1%から RC の No.5 試験体に比べて小さく抑えられた。No.4 と No.6 試験体も No.5 試験に比べて小さく抑えられた。 No.2 と No.3 試験体は最大耐力以降に急激にコン クリート引張主歪みが増加した。

3.6 最大ひび割れ幅

各正サイクルピーク時の最大せん断ひび割れ幅 の推移を図-8 に示す。PVA-FRC の No.1 試験体は 最大耐力以降、層間変形角 1%から RC の No.5 試 験体に比べて小さく抑えられた。No.2 と No.3 試 験体は最大耐力以降に急激にひび割れ幅が増大し た。それに対し、No.4 と No.6 試験体はひび割れ 幅は小さく抑えられた。

平均付着応力度から(5)式および(6)式により算 出されるトラス機構およびアーチ機構の負担せん 断力の各サイクルピーク時を結んだ包絡線を図-9、 図-10 に示す。

 $Q_t = n \cdot \cdot b \cdot j_t$ (5) $Q_a = Q_s \cdot Q_t$ (6) ここに、 $Q_t : h = J \land K$ 構の負担せん断力、 $Q_a : P - f$ 機構の負担せん断力、 $Q_s : 実験値、n : 主筋本数、$

:主筋表面積、 b:主筋の平均付着応力度である。 各試験体において、トラス機構の負担せん断力に 大きな相違は現れなかった。一方、アーチ機構の 負担せん断力では、PVA-FRCのNo.1とNo.3 試験 体がRCのNo.5 試験体を上回る結果となった。

4.2 繊維混入の影響

前述したように本実験では引張一定軸力の No.4 試験体を除く5体はせん断斜張力破壊したが、 この場合のせん断耐力はコンクリートの引張強度 に良く比例する(図-11参照)。 $_B = 40$ MPa 程度 のコンクリートに PVA 短繊維を体積比で1%混入 することで、引張強度を1.2倍高めることができ、 最も脆性的な破壊形式であるせん断斜張力破壊の 耐力もおよそ1.2倍に高めることができる。 1.0 第1.4 1.2 1.0 NO₁ (PVA-FRC axial compressi 橫補強筋降伏 横補強筋降伏 対角線上 ♪び割れ発生 0.4 11 ∑ 0.∠ ∏ 0.0 0.000 0.005 0.010 0.015 0.020 層間変形角 [rad.]

PVA 短繊維混入コンクリートのひび割れ後の 引張抵抗を含むトラスによるせん断抵抗機構を図 -12 に示す。 図-12 によるトラス機構の負担せん断 力は、ひび割れ面に平行に圧縮主応力が働くので それと直交する方向に引張主応力が作用するとす れば、前述 2.2 節の (3) 式のように理論的に求め られる。ここで、(3)式と(5)式によるよるトラス機 構の負担せん断力が等しいとおくと、歪みゲージ より測定した横補強筋に作用する応力 ""。とトラ ス角度 がわかればコンクリートがトラス機構に おいて負担する引張力 ct (=0.5 cr)を算出でき をひび割れ角度と同一と考え、ひび割れ図 る。 より No.1 試験体では =26.6 度(cot =2.0)、No.4 試験体では =39.8 度(cot =1.2)で変形角に関わ らず一定として、トラスのコンクリートが負担す る引張力を算出し図-13 に示す。PVA-FRC の No.1

試験体は最大 0.9 MPa、引張一定軸力の No.4 試験 体は最大 1.8 MPa の引張力を負担しており、PVA 短繊維のブリッジング作用によりコンクリートひ び割れ発生後も最大で引張強度の 1/2 まで伝達し た。さらに、両試験体は軸力以外は全く同一の試 験体であるが、圧縮軸力を受ける No.1 試験体は層 間変形角0.5%から1%に至るまでに横補強筋が降 伏し、それとともにコンクリートの負担する引張 力も急激に減少した。それに対し、No.4 試験体は 横補強筋が降伏する 1.5%の変形角までコンクリ ート引張力を維持し続けた。つまり、ひび割れを 介して PVA 短繊維によって伝達される引張力は ひび割れが大きく開口するとその能力を失い、横 補強筋がひび割れの開口を抑えていると PVA 短 繊維の働きは持続することになる。よって、PVA 短繊維は横補強筋と共同でせん断抵抗機構を形成 する場合に最大の効果が得られると思われる。

また、PVA-FRC の No.1 試験体は RC の No.5 試 験体に比べ最大耐力後のせん断力の低下割合が小 さく抑えられたことは、ひび割れ幅が抑制された こと、コンクリート引張主歪みが抑えられたこと、 かぶりコンクリートの剥離が防止されたことから 判断し、PVA 短繊維によってコアコンクリートを 拘束して圧縮強度の低減係数に影響を与えたこと によると思われる。

4.3 せん断耐力式の適用性

図-14に終局強度指針式、荒川 mean 式、および、 前述 2.2 節に示したそれらを修正した(1)式と(2)~ (4)式よるせん断耐力と実験値との比較を示す。計 算結果は全般的に実験値を過小評価したが、修正 終局強度式では短繊維の影響を考慮したため実験

参考文献

- [1] 大岡督尚、橘高義典、渡部憲:コンクリートの 破壊パラメータに及ぼす短繊維混入および材 齢の影響、日本建築学会構造系論文集、NO.529、 pp.1-6、2000.3
- [2] 神山力、橘高義典、田村雅紀:各種コンクリートの破壊特性の試験方法に関する研究、コンクリート工学年次論文集、Vol.23、No.3、2001.6
- [3] 閑田徹志、渡部茂雄、Li,Victor C.: PVA 繊維を 用いた高靭性 FRC による短スパンはりのせん

値に近づいた。 しかし、修正 荒川 mean 式 では過大評価 となり高強度 の No.2 試験 体では実験値 の 1.5 倍とな った。修正終

局強度式は概略では一致したが、軸力が考慮され ていないことなども含め、高い精度でせん断耐力 を予測することは難しい。

5 まとめ

(1)PVA 短繊維の混入はかぶりコンクリートの剥落を防止し、ひび割れ幅を抑制し、コアコンクリートを拘束する効果があり、その拘束効果によりせん断耐力を増加させることができる。(2)PVA 短繊維のプリッジング作用によりコンクリートひび割れ発生後も最大で引張強度の1/2 まで伝達でき、せん断耐力の増加に寄与する。(3)PVA 短繊維の混入により最大耐力後の靭性能が改善される。 (4)PVA-FRLCC 試験体は RC 試験体の83%のせん断耐力を保持するに留り、その使用には慎重を期さなければならないが、重量は RC の約 65[%]と軽いことを考慮すると実用化の可能性は充分ある。 謝辞

本研究は文部科学省および日本学術振興会の科 学研究費(特定領域研究B:計画研究代表-壁谷澤 寿海東京大学教授、および基盤研究B:代表者-橘高義典東京都立大学教授)によって実施した。

断挙動に関する実験的研究、コンクリート工 学年次論文集、Vol.22、No.3、2000.6

- [4] 松崎育弘、他:高靭性セメント材料の構造物への利用に関する研究(その6) PVA-ECC を用いた梁部材の曲げ・せん断加力実験(実験概要および実験結果)日本建築学会学術講演梗概集、pp.645-646、1999.9
- [5] 日本建築学会:鉄筋コンクリート造建物の終局 強度型耐震設計指針・同解説、1990.11