論文 RC 梁部材のせん断耐力に及ぼすせん断スパン比 a/d の効果

里道喜義*¹·幸左賢二*²·足立幸郎*³·鈴木直人*⁴

要旨:国内外で行なわれた実験データを収集し, RC 梁部材のせん断耐力に及ぼす a/d 効果について検討した。その結果,道路橋示方書ではせん断スパン比 a/d の効果を a/d≦ 2.5 の場合についてのみ考慮することとなっているが, a/d>2.5 の実験データについて も a/d 効果が確認できた。

キーワード: せん断スパン比, せん断耐力, 信頼性解析, 等分布荷重

1. はじめに

現在の RC 構造物の設計手法では,曲げによる照査とともにせん断による照査によって部 材断面が決定されることが多く,RC 構造物の せん断耐力を適切に推定することは設計上重 要な課題である。

RC 梁部材のせん断耐力については、これま でに多くの研究がなされ、種々の算定式が提 案されている。しかし、これらの式は過去の実 験データに依存した実験式が多く、適合性の 向上のためには、未だ検討の余地があると思 われる。

また, せん断耐力に影響を与える要因の一 つにせん断スパン比 a/d があるが, 道路橋示 方書では $a/d \le 2.5$ の場合についてのみ a/d効果を考慮している。しかし, a/d > 2.5 の場合 についてもその効果が見られるという報告¹⁾ がこれまでになされている。

そこで,本研究では国内外で行なわれた実 験データを収集し,RC 梁部材のせん断耐力に 及ぼす a/d 効果についての検討を行なった。

2. 実験データ

既往の国内外の文献より実験データ 455 個 を収集した。主に,岡村式¹⁾,修正道示式²⁾の定 式化に用いられた実験データに,最近10年間 に国内で行なわれた実験データ73個を追加 した。実験データをパラメータ毎に区分した ものを図-1に示す。また,解析に際しては,こ れらの中から道示式の適用範囲であるコンク

*1九州工業大学大学院	工学研究科建設社会工学専攻 (正会員)	
* 2 九州工業大学助教授	工学部建設社会工学科 Ph.D. (正会員)	
*3阪神高速道路公団	工務部 設計課 (正会員)	
*4建設技術研究所(株)	大阪支社技術第二部(正会員)	

リート圧縮強度 fck≦40N/mm²を満足する実 験データを対象とした。

3. 道示式の適応性検討

道路橋示方書では, せん断補強筋を有しな い梁部材のせん断耐力は式(1), 式(2)により求 められる。下記に示す5%超過式とは,信頼性 解析により導かれた信頼性区間 90%,下側超 過確率 5%の安全性を有する式である。計算 に際しては, a/d≦2.5の実験データについて はディープビーム式を, a/d>2.5 の実験デー タについては梁部材式を用いた。

① 梁

Sc=Ce·Cpt· τ _C·b·d

 $Sdc=Cdc \cdot Sc$ (2)

Sc=Ce·Cpt· τ _C·b·d

Cdc =
$$\frac{14}{1 + (a/d)^2}$$
: 平均式
Cdc = $\frac{9.24}{1 + (a/d)^2}$: 5%超過式

d:有効高さ(mm) b:部材断面幅(mm)

道示式(5%超過式)を用いた計算値と実験 値とを比較したものを図-2に示す。道示式を 用いた場合,実験データは平均が1.58,変動 係数が34.4%で分布しており,非常にバラツ キの大きい結果となっている。これは,式にお いて考慮されている各パラメータ(a/d,コン クリート強度,有効高さ,引張鉄筋比)に対す る評価式がその効果を妥当に評価できていな いことや,これらのパラメータ以外の要因が せん断耐力に影響していることなどが原因と して考えられる。

本論文では,特に各パラメータ評価式の適 応性に着目して検討を行った。

3.1 a/d 評価式の適応性検討

道路橋示方書では,有効高さ,引張鉄筋比の 割増係数をd<1mの場合には一律1.4,Pt>1.0% の場合には一律1.5 としている。しかし,図-1 に示すように,実験データは,d<1.0mおよび Pt>1.0%のものが多数を占めており,この条件 を適応するとほとんど有効高さと引張鉄筋比 の効果を考慮しないことになる。そのため, 解析においては,式(3)によりScを求めるこ とにより上記の条件を適用しないこととした。

Sc=0.82Pt^{1/3} · $(1/d)^{1/3}$ · σ ck^{1/3} · b · d (3)

Sc に式(3)を用いて各パラメータ評価式の 適合性について検討した。その結果,有効高さ, コンクリート強度,引張鉄筋比の評価式は比 較的妥当であったが,せん断スパン比 a/d の評 価式は,a/d と実験値/計算値(Se/Sdc)との間に 強い相関関係が見られた(図-3 参照)。図-3 にはせん断スパン比 a/d と Se/Sdc との関係を 示している。図より, $a/d \leq 3.0 \ e \ a/d > 3.0$ の 実験データでは近似曲線の傾きが異なり, $a/d \leq 3.0$ では 0.1792 と右上がりとなっているの に対し,a/d > 3.0 では 0.0007 と一定となってい る。つまり, $a/d \leq 3.0$ では a/d が大きくなるに従 い実験値と計算値の差が大きくなっている。 このことから,現在の道路橋示方書の a/d 評 価式では, RC 梁部材の a/d 効果を十分考慮で きていないと考えられる。

Se/

そこで,収集した実験データをもとに a/d 評価式の再評価を行った。

3.2 せん断スパン比 a/d の影響の再評価

(1) a/d の効果

図-4には、a/dとSe/Scの関係、また表-1に は、a/dの一定領域ごとのSe/Scの平均を示し ている。本来,道路橋示方書では a/d=2.5 を境 界として、それ以下の供試体についてのみ a/d 効果を考慮しているが、表-1 より a/d が 2.5 ~3.0 でもSe/Scの平均が 1.51 と a/d 効果が見 られる。

そこで,本論文においては a/d≦2.5,a/d> 2.5それぞれについて a/d評価式を提案した。

(2) a/d 評価式の再評価

RC 梁部材の a/d の効果については, これま でに二羽氏や岡村氏らにより研究がなされ評 価式が提案されている。二羽氏³⁾は, ディー プビームのせん断耐荷機構をタイドアーチモ デルでモデル化し, 式(4)により a/d 効果を定 式化している。

$$\frac{K}{1+\left(a/d\right)^2}\tag{4}$$

また, 岡村氏¹⁾は a/d が比較的大きな梁部 材(a/d>3.0)の a/d 効果を実験的に評価し, a/d 効果を式(5)で定式化している。

$$0.20(0.75 + \frac{1.4}{a/d}) \tag{5}$$

そこで, a/d 評価式の形状を a/d≦2.5 の場合 は式(4), a/d>2.5 の場合は式(5)と仮定して再 評価を行った。結果, 次式が得られた。

図-4 a/dと Se/Sdc の関係(修正道示式)

表-1 a/d の領域ごとの Se/Sc

a/d	データ数	Se/Sc
$0 \sim 1.0$	63	6.79
$1.0 \sim 2.0$	61	3.04
2.0 \sim 2.5	18	1.53
2.5 \sim 3.0	81	1.51
$3.0 \sim 4.0$	67	1.10
$1.0\sim$	56	1 08

図-5 a/dと Se/Sc の関係(提案式)

a/d
$$\leq 2.5$$
 $Cdc = \frac{10.3}{1 + (a/d)^2}$ (6)

2.
$$5 < a/d \le 5.0$$
 $Cdc = 0.4 + \frac{3.0}{a/d}$ (7)

式(6),式(7)を図に追加したものを図-5 に,a/d評価式に式(6),式(7)を用いて再計算し た結果を図-6に示す。

図より,道示式の a/d 評価式に式(6),式(7) を用いることにより平均が 1.0, 変動係数が 19.4%と比較的実験値と一致しており,近似 曲線の傾きが 0.003 と強い相関関係が見られ ないことから a/d 効果も妥当に評価している。

3.3 他のパラメータの適応性検討

a/d 以外のパラメータ(コンクリート強度, 有効高さ,引張鉄筋比)の評価式の適合性につ いて検討した。図-7 には,各パラメータと実 験値/S_o, S_d, S_Pの関係を示している。ここに 示す S_o, S_d, S_Pは,各パラメータの割増係数を 乗じていない計算値を意味する。

図より,実験データの近似曲線と道示式は, ほぼ一致しており,道路橋示方書に示される コンクリート強度・有効高さ・引張鉄筋比の評 価式は比較的妥当にその効果を評価している。

3.4 信頼性解析に基づく安全係数

近年,構造物に所要の安全性を合理的に確保するための設計法として,信頼性設計の導入が望ましいと考えられている。そこで,信頼 性解析に基づく安全係数の設定を行った。

せん断耐力式の推定精度のみに着目すると, 安全係数γは式(8)により求められる。

$$\gamma = P/P_{N} = (1 - \beta Vp)P$$
(8)
$$P = \frac{Se}{Sdc} = \frac{Se/Sc}{Cdc} \quad P_{N} = \frac{P}{\gamma}$$

$$\beta : \alpha \ \ c \ \ s \ \ c \ \ \ c \ \ c \ \ c \ \ c \ \ c \ \ \ c \ \ c$$

α = 5% (信頼区間 90%)とすると,式(8)よ り γ_{5%}=0.66 となる安全係数が得られた。よっ て,式(6),式(7)にγ_{5%}=0.66 を乗じることによ り,下側超過確率 5%の安全性を考慮したせ ん断耐力が求まる。図-8 に平均式(γ=1.0)と

5%超過式(γ=0.66)を用いた場合の a/d と Se/Sc の関係を示している。図より,γ_{5%}を提 案式に乗じることにより平均が 1.5,変動係数 が 19.7%となる。

4. 等分布荷重の評価方法

実構造物の中には開削トンネル等のような 土圧による等分布荷重を受けるものも数多く あり,等分布荷重を受ける RC 構造物のせん断 照査方法の確立は設計上重要な課題である。

そこで, 井畔氏⁴⁾および白戸氏²⁾が提案する 手法を取り上げ, その適合性を検討し, それを 拡張した手法を提案する。また, 検討に用いた 等分布荷重下の実験データは, 丁ら⁵⁾による 実験データ2個, 井畔ら⁴⁾による実験データ5 個, Leonhardt ら⁶⁾による実験データ12個の 計 19 個である。

4.1 既往の評価手法の適応性検討

井畔氏は,等分布荷重下の仮想せん断スパンをスパンの1/4 で集中荷重を受ける場合の せん断スパン a と等価であるとみなし,支点 から x=12d/(4×2)=1.5d 位置での作用せん断 力とせん断耐力を比較している。

白戸氏の手法は、多点で載荷された状態の せん断スパン ai を ai=Mi/Si(Mi,Si:各照査断面 i の曲げモーメント、せん断力)と設定し、破壊 時に生じていた各照査断面 i でのせん断力 Si とせん断耐力 Sdciの比 Si/Sdci が最大となる 断面を破壊断面としている。検討に際して、等 分布荷重の実験データを多数の集中荷重に変 換する必要があるが、今回の計算では 50 個の 集中荷重に分割して計算を行った。

各供試体と実験値/計算値の関係を図-9 に 示す。図より,分布荷重を考慮せずに集中荷重 として計算した場合,平均 2.04,変動係数 33.6%と非常に実験値を過小評価する傾向に あり,ばらつきも大きいが,井畔の手法と白戸 氏の手法を用いることにより平均が 0.97,0.95と比較的実験値と一致する。

実験での破壊断面位置をせん断ひび割れが

図-9 各供試体と実験値/計算値の関係

表-2 各手法に基づく破壊断面位置と実験の比較

実験データ		実験値	計算値 (mm)		実験値/計算値	
		(mm)	井畔	白戸	井畔	白戸
丁·桧貝	100-0	300	125	290	2.40	1.03
	200-0	325	250	500	1.30	0.65
井畔	3	525	900	1944	0.58	0.27
	4	875	1500	3240	0.58	0.27
	5	925	1500	3240	0.62	0.29
	6	2000	3000	6480	0.67	0.31
	7	2925	4500	9720	0.65	0.30
Leonhardt	11/1	297	176	409	1.68	0.73
	12/1	331	250	580	1.32	0.57
	13/1	452	313	675	1.45	0.67
	14/1	383	375	810	1.02	0.47
	15/1	427	500	920	0.85	0.46
	16/1	375	625	1050	0.60	0.36

図-11 スパンと仮想せん断スパンの関係

-935-

有効高さの2分の1の点を横切る位置とし, 各手法で求めた破壊断面位置と比較したもの を表-2に示す。表より,各手法を用いた破壊 断面位置は実験での破壊断面位置と適合性が 低く,非常にバラツキも大きい。

4.2 破壊断面と仮想せん断スパンの検討

収集した実験データを基に破壊断面位置に ついて検討した。有効高さ d と破壊断面位置 の関係を図-10に示す。図より,有効高さと破 壊断面位置との間には相関関係が見られ,破 壊断面位置は支点から有効高さ d だけ離れた 位置とほぼ一致することがわかる。これは,等 分布荷重下では,支点が大きくひび割れに影 響すると考えられ,そのために有効高さが破 壊断面の支配的要素となったと考えられる。

そこで, せん断照査断面を支点から有効高 さだけ離れた位置とし, 実験データを用いて 式(9)により仮想せん断スパン a を逆算した。

$$a = d\sqrt{10.3\frac{Sc}{Se} - 1} \tag{9}$$

求めた仮想せん断スパン a とスパン L の関係 を図-11 に示す。図より,スパン L と仮想せん 断スパン a の間には相関関係が見られ,等分 布荷重下の仮想せん断スパン a はスパン L の 0.3 倍とほぼ一致する。

そこで,等分布荷重下の評価手法を図-12 に示すように,せん断照査断面を支点から有 効高さdだけ離れた位置,仮想せん断スパンa を支点からスパンの 0.3 倍の位置とし,再び 実験値と比較した。その結果,平均1.19,変動 係数 20.8%と比較的実験値と一致していた。

5. まとめ

収集した実験データを基に RC 梁部材のせ ん断耐力について検討した結果をまとめる。 ① 道示では $a/d \le 2.5$ についてのみ a/d 効果 を考慮することとなっているが, a/d > 2.5 の 実験データについても a/d効果が確認できた。 ② 道示の a/d 評価式の再評価を行った結 果, $a/d \le 2.5$ では式(4), $2.5 < a/d \le 5.0$ では式

(5)を用いることにより a/d 効果を妥当に評価 し,実験値との適合性も良い。

③ 等分布荷重が作用する実験データに対し て,その効果を考慮した手法(井畔,白戸)を 用いることにより概ね実験値と一致する。ま た,照査断面位置を支点から有効高さだけ離 れた位置とし,また仮想せん断スパン a を支 点からスパンの 0.3 倍の位置とすることによ っても概ね評価できる。

参考文献:

1) Okamura, H. and Higai, T.: Proposed design equation for shear strength of reinforced concrete beams without web reinforcement, Proc of JSCE, No. 300, pp. 131-141, 1980. 8

白戸真大,福井次郎,幸左賢二,梅原剛:ディープビーム・フ
 チングのせん断耐力算定法に関する研究,構造工学論文
 集, vol. 47A, pp. 1315-1325, 2001.3.

3) 二羽淳一郎: FEM 解析に基づくディープビームのせん断耐荷 力算定式,第2回 RC 構造のせん断問題に対する解析的研究に関す るコロキウム論文集, pp. 119-126, 1983. 10.

 4) 井畔瑞人,塩屋俊幸,野尻陽一,秋山暉:等分布荷重下における大型鉄筋コンクリートはりのせん断強度に関する実験的研究, 土木学会論文集,第372号/V-1, pp.175-184, 1984.8.

5) 丁則平,桧貝勇,中村光:有限要素法による RC 部材のせん断破壊性状の検討,コンクリート工学年次論文報告集, Vol. 19, No. 2, pp. 723-728, 1997

6) Leonhardt, F. and Walther, R. :Beitrage zur Behandlung der Schubproblem im Stahlbetonbau, Beton und Stahlbetonbau, 1962. 2