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ABSTRACT:    It has been found that RC deep beams usually fail by the localized compressive failure 
of concrete.  In this paper, the application of concept of localized compressive failure as the material 
model of concrete, based on the parameters such as the localized compressive failure length, Lp, and 
the compressive fracture energy, GFc, is performed.  The analytical results using the lattice model 
and Mander’s truss model considering the proposed material model show the satisfactory predictions 
in shear analysis of RC deep beams with and without transverse reinforcement.   
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1. INTRODUCTION 
 

The RC deep beam is a RC structural member in which the ratio of the shear span to effective 
depth, a/d, is less than or equal to unity.  At the failure stage of RC deep beams, along the diagonal 
cracks connecting the loading point and supports, crushing of concrete at the upper portion of the 
beams in the vicinity area of the loading point is usually observed, which is called localized 
compressive failure [1].  To obtain more accurate prediction of the shear behavior of RC deep beams, 
not only the concept of tension softening, but the concept of localized compressive failure of concrete 
should also be incorporated.  In this study, the localized compressive failure length, Lp, and the 
compressive fracture energy, GFc, proposed by Lertsrisakulrat, et al. [1] have been applied to 
formulate the stress-strain relationship of the concrete in compression.  

The analytical methods applied in this study are the lattice model and Mander’s truss model.  
The lattice model is considered as a simplified analytical model to clarify the change in shear 
resisting mechanism of the RC beams [2].  Alternatively, Mander’s truss model is the modified truss 
model with a smaller number of degrees of freedom compared with the lattice model.  It can be used 
to assess the shear behavior of RC members by considering the interaction between the shear and 
flexure mechanisms [3].   

In this paper, the lattice model and Mander’s truss model considering the concept of localized 
compressive failure have been utilized to evaluate the shear test of RC deep beams with and without 
the transverse reinforcement carried out by Lertsrisakulrat, et al. [1].   
 
 
2. LATTICE MODEL ANALYSIS 
 

Figure 1 shows the schematic diagram of a RC deep beam which is modeled by the lattice 
model into an assembly of the truss components.  The concrete and the reinforcements are modeled 
into the members as shown in Fig. 1.  The modeling of concrete consists of flexural compression 
members, flexural tension members, diagonal compression members, diagonal tension members, 
vertical compression members and an arch member.  The reinforcement is modeled into the 
horizontal and vertical members.  The diagonal compression and the diagonal tension members have 
an inclination of 45° and 135°, respectively.  By considering the concrete diagonal tension member, 
which is one of the major outstanding points of the lattice model, the shear behaviors of concrete 
beams before and after the initiation of the diagonal cracking can be captured appropriately. 
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The web concrete is divided into truss member and arch member as shown in Fig. 2.  By 
assuming the parameter t as the ratio of the width of the arch member to beam width, b, the width of 
the arch member and the truss member is equal to bt and b(1-t), respectively, where 0<t<1.  The 
value of t is determined in such a way that it minimizes the total potential energy of the entire 
structure, Π.  Π is calculated from the summation of the strain energy of each element and the work 
done by externally applied load based on the elastic analysis.  

With the considerations of mesh discretization and the complexity of flow of internal stresses in 
the member, a RC deep beam has been suitably modeled in half of the specimen in which the 
horizontal spacing of each adjacent 2 nodes is equal to d/8 and the value of a/d is equal to 1.0 
matching to the actual specimen as shown in Fig. 1.  The arch member is connecting between the 
loading point and the support with the thickness assumed to be (0.3d+r) sin 45°, where r is the 
bearing plate width. 

The tension softening model named one-forth model and the tension stiffening model has been 
applied to the diagonal tension members and the flexural tension members, respectively.  For the 
reinforcement members, the bilinear elasto-plastic model of steel is applied.  
 
 
3. MANDER’S TRUSS MODEL ANALYSIS 
 

In the shear mechanism analysis, a RC structural member may be considered as a structural 
element of combined mechanism between shear and flexure mechanisms [3].  Hence, the total 
deformation of the member can be expressed as:  

fu ∆∆∆ +=                                (1) 

where ∆, ∆u and ∆f  are total, shear and flexure deformations of a RC member, respectively.   
And the shear resisting capacity should be the lesser of:  

csu VVV +=     and     
L

M
V y

f =                        (2) 

where Vu and Vf represent shear force resisted by shear and flexure mechanisms, correspondingly.  
Vs and Vc are the shear resistance due to the contributions of transverse reinforcement and concrete, 
respectively.  My is the yielding moment of the RC member and L is the member’s length.  In the 
division of web concrete for Vs and Vc model, it was found that, similar to the lattice model, the ratio 
of the model width which minimizes the potential energy, gives a good prediction.  

Fig. 1 Schematic diagram of RC deep beam in the
lattice model (with transverse reinforcement)

Fig. 2 Cross section of a concrete
beam in the lattice model 
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3.1 SHEAR MECHANISM 
Figures 3(a) and (b) show the schematic 

diagram of one half of a RC deep beam, which is 
modeled by applying Gauss 2-point quadrature with 
the normalized coordinate parameter, x1, to Mander’s 
truss model, for evaluating Vs and Vc in shear 
mechanism, respectively [3].  In Vs model, the 
transverse reinforcements have been modeled 
perpendicularly to the beam axis.  In Vc model, the 
inclined concrete ties have been modeled 
corresponding to the ineffective zones in which the 
effect of flexural cracking in these regions should be 
eliminated.  The diagonal struts represent the 
concrete compression field stabilizing the truss 
model.  In the traditional truss model, the shear 
resistance is assessed from the effects of transverse 
reinforcement and concrete tensile strength in which 
the shear resisted by the strut along the diagonal 
cracks is neglected.  However, for RC deep beams, 
the arch action, which is created from the diagonal 
cracks and longitudinal reinforcement, becomes the 
significant resistance in governing the fracture 
mechanism after the diagonal crack occurred.   
Thus, for simplicity, the shear resistances by the 
struts in Vs model (Vsd) and in Vc model (Vcd) should 
be taken into the consideration. 

By utilizing the virtual work method to the 
model, the relationships between the deformation and 
each shear resistance component can be derived. 

The crack angle is simply proposed to be equal 
to α = tan-1(jd/a) for RC deep beams without 
transverse reinforcement.  Whereas, for RC deep 
beams with transverse reinforcement, the crack angle 
can be determined from Eq. 3 proposed by Mander, 
et al. [3].         

41

w

gt

vw
w

1

nr1
Ap
Ar

nr
tan





















+

+
= −

ζ
θ           (3) 

where Ag = bd, Av = b× jd, pt = Ash/Ag, n = Es/Ec, ζ = 
boundary condition constant = 1.5704, Ash = 
cross-sectional area of the longitudinal reinforcement, 
and rw = transverse reinforcement ratio. 
 
 
3.2 FLEXURE MECHANISM 

In order to evaluate the relationship between the shear force due to the flexure mechanism and 
the deformation, for simplicity, the following way of thinking was applied.  As shown in Fig. 4, 
before the onset of crack, the rigidity due to the flexural concrete should be considered.  With the 
increase in moment, the flexural rigidity of the section is reducing by cracking of concrete.  The 
behavior of the section after crack is dependent mainly on the reinforcement content.  
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Fig. 3 Modeling of RC deep beam
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4. CONCEPT OF LOCALIZED COMPRESSIVE FAILURE OF CONCRETE 
 
4.1 APPLICATION OF THE CONCEPT 
    In localized compressive failure of concrete, the localized compressive fracture length, Lp, can 
be determined by Eq. 4 [1].  

=  1.36     ; D* < 100 
=  -3.53×10-5D* +1.71    ; 100 ≤ D* ≤ 180           (4) 
=  0.57     ; D* > 180 

where         : the equivalent cross-sectional width (mm) and Ac is the cross-sectional area of the 
concrete member (mm2).  The localized compressive failure volume, Vp, can be derived by Lp × Ac. 
    The compressive fracture energy, GFc, is defined as the energy required to cause compressive 
failure per unit volume of failure concrete.  According to Lertsrisakulrat, et al. [1], GFc obtained 
from the RC deep beam tests is equivalent to GFc from the uniaxial compressive tests and can be 
calculated from the empirical equation in terms of fc' as Eq. 5.  

( )241'
cFc mm/Nf086.0G =                (5) 

At this juncture, by assuming Vp the energy consumed by the failure portion, Enet, which is 
equivalent to the area under the load-deformation curve (Ρ−∆), can be derived by multiplying GFc 
with Vp.  To apply this concept to the material model of concrete in compression, Enet should be 
transformed to energy per unit volume, enet, which is equal to the area under the compressive stress- 
strain relationship (σ-ε) as expressed in Eq. 6.  Here, it is noteworthy that the empirical factor K is 
introduced in order to take into account the transverse reinforcements and the effect of the energy 
consumed by the friction and assumed to be 1.14 and 1.82 for beam without and with transverse 
reinforcement, respectively. 

 
(6) 

 
 
4.2 FORMULATION OF MATERIAL MODEL 

From the obtained parameters, the stress-strain 
relationship for compression members can be proposed as 
shown in Fig. 5.  The formula of the material model 
based on concept of localized compressive failure of 
concrete has been simply proposed as summarized in Eq. 7 
[4].  For the ascending branch (pre-peak), the relationship 
proposed by Vecchio, et al. [5] has been applied as Eq. 7a 
and the consumed energy of this part is set to be e1 (Eq. 8a).  
For the descending branch (post-peak), the bilinear model 
has been proposed.  By subtracting enet by e1, the 
consumed energy in the post-peak region, e2, is obtained 
(Eq. 8b).  By applying the empirical factor m (Eq. 8c), 
the '

lastε  can be derived (Eq. 8d).  Line A can be 
obtained as Eq. 7b.  Assuming the slope of Line B to be 
equal to –Ec/100, Line B can be derived as Eq. 7c.  
Finally the stress-strain relationship for compression 
members can be proposed.   
Vecchio’ s Equation, 
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Line A;  
 

              (7b) 
 
Line B; 

              
(7c) 

 
The important factors in the calculations are recapitulated in Eq. 8 as  
 

                     (8a)                           (8b) 
 
 

(8c)                    (8d) 
 
 
 
5. ANALYTICAL RESULTS AND DISCUSSION 
 
    The experimental data of 6 RC deep beams, tested by Lertsrisakulrat, et al. [1] are adopted and 
compared with the analytical results using the lattice model and Mander’s truss model as tabulated in 
Table 1.  It is noted that all cases of the specimens failed in the shear compressive mode.  
    Figures 6 and 7 show the comparisons between the experimental and the analytical results in 
cases where the effective depths are, respectively, 400 and 600 mm with rw of 0%, 0.42% and 0.84%.  
The solid circles represent the experimental results (Exp.).  For the lattice model analysis, the black 
thin lines represent the analytical results when the original equation proposed by Vecchio (Vecchio) 
has been incorporated to the compression member.  While the black bold lines represent the results 
incorporating the proposed material model (Lattice).  The gray bold lines represent the results using 
Mander’s truss model applying the proposed material model (Mander).   

In the lattice model analysis, it becomes apparent that analytical results in pre-peak region give 
the perfect predictions in most cases.  For the post-peak region, the results applying the proposed 
material model show the better predictions of load-deformation relationship compared with ones in 
which Vecchio’s equation was used. 

Similarly, by incorporating the concept of localized compressive failure to Mander’s truss model 
analysis, the analytical results show the acceptable tendency to the experimental results.  However, 
the analytical results show somewhat difference.  Since the flow of internal stresses in RC deep 
beams is comparatively complicated, it is difficult for the simplified model with a small number of 
members such as Mander’s truss model to predict the shear behavior accurately as the lattice model.  
Nevertheless, it is shown that Mander’s truss model can be used to evaluate the shear resisting 
capacity and its deformation in an acceptable degree.   
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Table 1 Outline of the experimental data carried out by Lertsrisakulrat, et al. [1]
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6. CONCLUSIONS 
 
(1) The stress-strain relationship of concrete in compression considering the concept of localized 

compressive failure of concrete has been proposed based on the localized compressive failure 
length, Lp, and the compressive fracture energy, GFc. 

(2) For RC deep beams with and without transverse reinforcement failed by the localized 
compressive failure of concrete, the lattice model incorporating the proposed material model 
provides the high accurate prediction of shear behavior until the ultimate stage. 

(3) By comparing with the lattice model, Mander’s truss model is simpler but yields an acceptable 
prediction on the load-deformation relationship, however, with a lower accuracy. 
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Fig. 6 Load-midspan deflection (d = 400 mm) 
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