論文 鉄筋座屈を考慮した格子モデルによる RC 橋脚の静的正負交番解析

三木 朋広^{*1}・Manakan LERTSAMATTIYAKUL^{*1}・二羽 淳一郎^{*2}

要旨:繰返し水平力を受ける鉄筋コンクリート橋脚の塑性変形挙動を把握することを目的として, 静的格子モデル解析による検討を試みた。静的格子モデルは,対象部材を適切な材料モデルを組 み込んだトラス要素に離散化することで,せん断耐荷機構を明確に評価できる簡便な解析モデル である。壁式鉄筋コンクリート橋脚を対象とした,水平一方向静的交番載荷実験の結果と解析結 果を比較した結果,軸方向鉄筋の座屈挙動を適切にモデル化することで,最大耐力以降の挙動が 把握できることを確認した。

キーワード:鉄筋コンクリート橋脚,鉄筋座屈,塑性変形,静的格子モデル解析

1. はじめに

1995年の兵庫県南部地震において,大きな地震力 を受けた鉄筋コンクリート(RC)橋脚が,その変形 性能不足等の原因によって多数の致命的な被害を受 けた。この経験を踏まえ,平成8年度制定のコンク リート標準示方書[耐震設計編]には,コンクリー ト構造物の耐震性能照査において,軸方向鉄筋のひ ずみが塑性ひずみを大きく超えるような塑性変形領 域を考慮する必要があることが規定されている。

RC 橋脚の主鉄筋降伏後の大きな塑性変形の予測 には,繰返し載荷を受ける鉄筋の挙動を適切に把握 する必要がある¹⁾。わが国で建設されている一般的 な RC 橋脚は,実断面が大きく,断面寸法に比べ鉄 筋量が比較的少ないので,軸方向鉄筋の座屈が最大 耐力に影響することは少ないと考えられる。しかし ながら,じん性や吸収エネルギーなど,RC 橋脚の非 線形領域の挙動に対しては,鉄筋座屈挙動はそれら に影響を与える重要な要因の1つである。

本研究では,格子モデル²⁾により静的正負交番解 析を行うこととした。格子モデルは,RC部材を軸力 のみを伝える,適切な材料モデルを組み込んだトラ ス要素に離散化しているので,力の流れが特定でき る。さらに,部材内部のせん断耐荷機構を把握する ことによって,その解析結果の妥当性を確認するこ ともできる。しかしながら,従来の格子モデル解析 では鉄筋の座屈を考慮していないために,最大耐力 以降の大変形領域の予測が十分ではなかった³⁾。 本研究では,静的格子モデル解析によって,壁式 RC橋脚の静的正負交番載荷実験の検討を行う。この とき,弾性座屈理論より算出した座屈長内の鉄筋の 局所座屈挙動を空間的に平均化したモデルによって 評価し,塑性変形挙動を把握することを試みた。

- 2. 解析モデル
- 2.1 格子モデルの概要

格子モデル^{2),3)}では,図-1に示すように,コンク リートは曲げ圧縮部材,曲げ引張部材,斜め圧縮部 材,斜め引張部材,端部水平部材,アーチ部材に離 散化される。補強筋は軸方向部材,水平部材にモデ ル化される。また,コンクリートの斜め圧縮部材と 斜め引張部材を,45度と135度方向に規則的に配置 し,端部節点以外で変位が独立な部材であるアーチ

*1 東京工業大学大学院 理工学研究科土木工学専攻 工修(正会員)

^{*2} 東京工業大学大学院教授 理工学研究科土木工学専攻 工博(正会員)

部材を組み込むことで,斜めひび割れ発生後,マク 口的な圧縮力の方向の変化に対応できる。

2.2 各要素のモデル化

図 - 2 は,格子モデルにおけるはり断面の区分の 概念図である。ウェブコンクリート部分を図 - 2 に 示すように,トラス部分とアーチ部分に区分する。 それぞれの要素の幅は,アーチ部分は bt,トラス部 分は b(1-t)(0<t<1)となる。この時,t値は,はりの初 期状態における微小な強制変位に対する,部材全体 のポテンシャルエネルギーが最小となるように定め る。t値の決定に関して本研究では,従来の格子モデ ル^{2),3)}と同様に,ひずみエネルギーと外力のなす仕事 から定義されるポテンシャルエネルギーが最小とな る時のt値を求め,以後の格子モデル解析に用いた。

2.3 コンクリートモデル

コンクリートモデルは、従来の格子モデル^{2),3)}と同様のモデルを採用している。以下にその概要を示す。

コンクリートの斜め圧縮部材,アーチ部材に対し て,帯鉄筋による拘束効果を考慮するために,圧縮応 力 σ'_c - 圧縮ひずみ ε'_c 関係を Mander らの提案⁴⁾に基 づき,図-3のようにモデル化した。ただし,図-3 中の f'_{cc} は拘束効果を考慮したコンクリートの圧縮 強度であり, ε'_{cc} はそのときの圧縮ひずみである⁴⁾。 さらに,Collins らの実験的な研究⁵⁾に基づき,ひび 割れたコンクリートの引張ひずみ ε_l の増加に伴う, 直交方向の圧縮強度の軟化挙動⁵⁾を考慮した。ただ し,コンクリートの曲げ圧縮部材に対しては,式(1) 中の軟化係数 η を 1.0 として用いている。

$$\sigma_c' = -\eta \cdot f_c' \left\{ 2(\varepsilon_c' / \varepsilon_o) - (\varepsilon_c' / \varepsilon_o)^2 \right\}$$
(1)

$$\eta = 1.0 / \{ 0.8 - 0.34(\varepsilon_t / \varepsilon_o) \} \le 1.0$$
(2)

ここで , $\varepsilon_{o}^{'}$ = - 0.002

除荷剛性,再載荷剛性には初期剛性を用い,直線 的に応力が低下,もしくは回復するものとした。

コンクリートの引張モデルには,鉄筋の付着作用 の及ぶ領域とそうでない領域で異なるモデルを用い た。コンクリートの曲げ引張部材は,鉄筋を含んだ 領域に位置しているため,コンクリートと鉄筋の付 着作用を考慮した。ひび割れ前は弾性体と仮定し, ひび割れ発生後には岡村・前川のテンションスティ フニングモデル(図-4)を用いた。ひび割れ発生ひ ずみ ε_{cr} は0.0001とし,ひび割れ発生後の応力 σ_t -ひずみ ε_t 関係には式(3)を用いた。

$$\sigma_t = f_t \left(\varepsilon_{cr} \,/\, \varepsilon_t \right)^{0.4} \tag{3}$$

ここで, f_t :コンクリートの引張強度

コンクリートの斜め引張部材は,鉄筋の付着作用 は影響しない部材と仮定した。よって,コンクリー ト特有の脆性的な挙動を表現するために,図-5 に 示すように引張軟化曲線として 1/4 モデルを適用し た。この時,破壊エネルギーG_Fは普通コンクリート の標準的な値 0.1 N/mm を用いた。

除荷,再載荷時の応力-ひずみ関係は原点指向型 とし,直線的に応力が低下,回復するものとした。

2.4 コンクリート中鉄筋の局所座屈モデル

軸方向鉄筋の座屈挙動を扱う際,Dhakalらによっ て提案されたモデル⁶⁾を採用し,静的格子モデル解 析に組み込んだ。Dhakalらのモデルの特徴は,鉄筋 の局所的な座屈挙動を空間平均化して取り扱うこと で,ある程度大きな要素寸法を採ることができるこ とである。このモデルは,空間的に平均化する領域

 f_t

0

図 - 4

(座屈長 L)と軸方向鉄筋の直径 D との比 L/D,及 び降伏強度に依存しているため,まず座屈長 L を定 める必要がある。なお,解析では幾何学的非線形性 は考慮していない。

(1) 座屈長Lの算出

座屈長 L は,図 - 6 に示すように,帯鉄筋間隔の 整数倍と仮定している⁶。また同図に示すように, 座屈発生後の鉄筋形状は,帯鉄筋位置を端部とする 余弦関数(図 - 6 中,式(4))と仮定した上で,軸方 向鉄筋の曲げひずみエネルギー,弾性ばね(k_n)で 仮定した帯鉄筋のひずみエネルギー,及び軸方向鉄 筋に作用する軸圧縮力(P)による仕事の総和が最も 小さくなるときの k_n とPを求める。このときの作用 圧縮力 P は座屈荷重 P_n と一致し,鉄筋に座屈荷重 P_n 以上の圧縮力が作用したときを座屈発生の判定条 件とする。このようにして求められた n^{th} モード座屈 (帯鉄筋間隔sのn倍)に必要な帯鉄筋の剛性 k_n と, 実際の配筋状態より求められた剛性 k_i を比較して, 式(5)より座屈長 Lを算出する⁶。

 $k_t > k_n \implies L = n \cdot s; n = 1, 2, 3, \cdots$

ここで, s: 帯鉄筋間隔

このとき, k_t は図 - 7 に示すように,帯鉄筋,巻立 て鋼板をはり要素で,また中間帯鉄筋をばね要素で モデル化し,算出する。

また,軸方向鉄筋の見かけの曲げ剛性は,鉄筋が 塑性域に達しているため,弾性域での曲げ剛性 *E*_sI より小さくなっている。そこで,塑性化した鉄筋の 影響を考慮した曲げ剛性⁶⁾を次式で仮定する。

$$EI = \frac{E_s I}{2} \sqrt{\frac{f_y}{400}}; \quad (MPa)$$
(6)

ここで, E_s: 鉄筋の弾性係数(MPa), I: 鉄筋の断 面 2 次モーメント(mm⁴) f_y: 鉄筋の降伏強度(MPa)

(2) 座屈鉄筋の平均応力 - 平均ひずみ関係

前節で述べたように、Dhakal らのモデル⁶は L/D, 及び降伏強度をパラメーターとするモデルであり, 座屈の生じていない鉄筋の応力 σ_i - ひずみ ε 関係 によっても変化する⁶。本研究では,座屈の生じて いない鉄筋の応力 - ひずみ関係にバイリニアモデル を用いた。このとき降伏後の勾配は初期勾配 E_s の1% とした。また、繰返し載荷を受ける鉄筋モデルには, 応力が正負反転する際に現れるバウシンガー効果を 考慮するために、Kato モデル⁷⁾と同等の精度を有し, かつ数値計算に適した数値モデル⁸⁾を用いた。

以上により決定した鉄筋座屈モデルの概要図を図 -8 に示す。座屈発生を判定した後の単調載荷下の 鉄筋平均応力-鉄筋平均ひずみ関係は,図-8 中の

$\sigma = \frac{\sigma^*}{\sigma_l} \left(\frac{\varepsilon_y + \varepsilon}{\varepsilon_y - \varepsilon^*} \right) \sigma_l; \qquad (-\varepsilon^* \le \varepsilon < \varepsilon_y)$	(7)
$\sigma = -\sigma^* - 0.02 E_s(\varepsilon + \varepsilon^*); (\varepsilon < -\varepsilon^*)$	(8)
ただし, σ^* ,及び $arepsilon^*$ は変曲点(左図を参照) の応力と

ひずみであり,以下の 式より求めることがで きる

図 - 8 鉄筋座屈モデルの概要^{6),9)}

(5)

表-1 供試体名,及び補強方法

供試体	巻立て工法	中間帯鉄筋	プレストレス	
No.1	-	-	-	
No.2	鋼板+RC 根巻き	-	-	
No.3	鋼板+RC 根巻き	アラミドロッド	-	
No.4	鋼板+RC 根巻き	アラミドロッド	29.4 kN/本	

式(7),式(8)で表示される。また繰返し履歴に関して は,塑性ひずみ点を原点とする Dhakal らのモデル⁶⁾ に Kato モデル⁷⁾を漸近させた。さらに,圧縮から引 張に移行する際,鉄筋のエネルギー吸収性能を過大 評価する傾向があるため,実部材中の鉄筋挙動¹⁾を 参考にして修正を行った⁹⁾。

2.5 アラミドロッド

アラミドロッドは降伏点を有さないため,材料モ デルは引張強度までは線形弾性体で,引張強度に達 すると破断し,それ以降の伝達応力をゼロとした。

3. 解析概要

3.1 実験概要

解析対象として,壁式 RC 橋脚を対象とした静的 正負交番載荷実験⁹⁾を選択した。供試体は,断面形 状が 500 mm×2500 mm(辺長比5)の壁式 RC 橋脚 であり,実橋脚に対する縮尺は約 1/3 である。供試 体形状,及び配筋図を図-9 に示す。主鉄筋比は実 橋脚と等しく 0.85%である。供試体種類,及び使用 材料の特性をそれぞれ表-1,表-2 に示す。

水平力の載荷方法は,一方向載荷変位漸増方式で あり,同一変位振幅の荷重繰返し回数は3回である。

表 - 2 コンクリート,鉄筋,及び アラミドロッドの材料特性

コンクリート圧縮強度 (MPa)			25.6
鉄筋	D13	降伏強度 (MPa)	295.
	D15	弾性係数 (MPa)	210000.
	D6	降伏強度 (MPa)	295.
	Do	弾性係数 (MPa)	210000.
アラミドロッド		保証強度 (MPa)	1764.
6		弾性係数 (MPa)	52920.

本解析では実験と同様に変位制御で増分計算を行っ た。しかし,繰返し載荷に伴う剛性劣化を考慮して いないために,過去に経験した最大ひずみ以降は繰 返し回数に依らず常に元の状態に戻るので,繰返し 劣化に対する議論は行わない。そのため,実験,解 析ともに各載荷振幅1回目の繰返し載荷時の結果を 用いる。また軸力は,橋脚基部における軸圧縮応力 が0.98 MPa となるように,実験,解析ともに橋脚頭 部に一定軸圧縮力(1225 kN)を作用させている。

3.2 供試体のモデル化

3.1 に示す供試体を解析するために用いた静的格 子モデルを図 - 10 に示す。繰返し水平力を受ける単 柱式橋脚を対象としているため,アーチ部材は水平 力載荷点と橋脚基部を結ぶ長い要素を互いにクロス するように配置している。また,アラミドロッド, 根巻きコンクリート,および鋼板は,図 - 10 に示す 橋脚基部位置に水平部材としてモデル化した。

4. 壁式 RC 橋脚の静的正負交番解析

4.1 座屈長,及び実験全体挙動

壁式 RC 橋脚を対象とした,水平一方向静的正負 交番載荷実験,及び静的格子モデル解析によって得

図 - 11 履歴曲線(No.1供試体)

表-3 静的正負交番実験結果,及び静的格子モデル解析結果

	No.1		No.2		No.3		No.4	
	実験	解析	実験	解析	実験	解析	実験	解析
降伏水平耐力(kN)	553.7	567.6	575.3	557.0	507.6	563.5	544.9	519.7
降伏変位(mm)	9.8	6.4	5.8	6.6	5.5	8.0	6.0	6.0
最大水平耐力(kN)	609.6	606.7	616.4	633.7	605.6	689.3	701.7	760.2
終局変位(mm)	58.6	58.0	47.0	48.0	77.2	-	77.6	-

られた結果の一例として,No.1 供試体の載荷点位置 における水平力と水平変位の関係を図 - 11 に示す。 No.1 供試体に関して,実験では図 - 11 に示すように, 曲げ圧縮力を受ける側のかぶりコンクリートの剥離 が観察された。特に,変位振幅が 68,の載荷時に正 載荷から負載荷に向かう荷重ゼロ付近でかぶりコン クリートが橋脚全幅にわたって剥落した。実験後, その領域は橋脚基部から約 1.0D(D:有効高さ =450mm)であることが確認されている。解析では, 弾性座屈理論を用いた計算より座屈長を 450mm と 算出しており,実験と一致している。

No.2 供試体に関しても同様に,弾性座屈理論より 算出された座屈長は450mmであり,実験後観察され た座屈長が1.0D 程度であったことから,中間帯鉄筋 を有さない壁式 RC 橋脚の座屈長の予測が妥当な精 度で行われていることが分かった。ただし,中間帯 鉄筋を有する No.3 供試体に関しては,実験後の観察 より座屈長が数10mmであり,また中間帯鉄筋にプ レストレスを導入した No.4 供試体では座屈は観察 されなかった。解析においても,No.3,No.4 供試体 ともに,軸方向鉄筋に作用する圧縮力が座屈荷重に 達しなかったため,座屈は生じなかった。なお,本 研究では,かぶりコンクリートが鉄筋座屈を抑制す る作用は無視しており,軸方向鉄筋が座屈荷重に達 し,座屈すると同時にかぶりコンクリートは外側に 押し出され,剥離すると修正している。

4.2 耐力,及び変形性能

耐力及び変形に関して,静的正負交番載荷実験の 結果,及び静的格子モデル解析の結果を表-3 に示 す。ここで,終局変位とは,荷重が最大耐力を示し た後徐々に耐力が低下し,再び降伏耐力にまで達し た時の変位とした。表-3 より,静的格子モデル解 析によって中間帯鉄筋を有さない場合(No.1,No.2 供試体)は軸方向鉄筋の降伏時,最大時,及び終局 状態の耐力,変位の予測が妥当な精度で行われてい ることがわかる。

また,解析結果の一例として,No.2供試体に関す る載荷点位置における水平力-水平変位関係の包絡 線を図-12に示す。同図中には弾性座屈理論より求 めた座屈長(1.0D=450mm),及び座屈を考慮しない 場合(0.0D)を示している。降伏水平耐力以降,最 大耐力までの挙動に関しては,座屈の考慮の有無で 大きな差は見られない。しかしながら,さらに大き な水平変位が作用した際,座屈を考慮しない場合は 実験で見られるような耐力の低下は予測できず,座 屈を考慮することでより実験結果に近い耐力の低下 挙動を予測できていることがわかる。

4.3 履歴特性

座屈を考慮した場合と無視した場合の静的格子モ デル解析によって得られた, No.1 供試体の載荷点位 置における水平力 - 水平変位関係を前述の図 - 11 中 に併せて示す。耐力低下開始時の変位は,実験では

図 - 12 包絡線(No.2供試体)

50mm 程度であるのに対し,座屈を考慮した解析で は 40mm 程度と小さくなっている。一方,水平変位 が大きくなるにつれて,履歴曲線に除荷・再載荷時 の剛性低下が見られ,吸収エネルギーが低下するこ とが解析的に表現できている。このような解析結果 は No.2 供試体も同様であった。しかしながら, No.3, No.4供試体に関しては、解析中に座屈発生に至らず, 実験のような耐力低下,及び除荷剛性の低下は見ら れなかった。この違いは,実験では橋脚が大きな水 平変位を繰返して受けることで,軸方向鉄筋が低サ イクル疲労によって破断したが,解析ではこれを考 慮していないためと考えられる。またこれらの結果 から,壁式橋脚のような載荷直交方向に大きな部材 で,かつ中間帯鉄筋を有する場合では,厚さ方向に 平面応力場を仮定する2次元モデルの適用限界が示 唆された。

5. まとめ

本研究では,鉄筋の座屈挙動を考慮した静的格子 モデルを用いて,壁式 RC 橋脚の静的正負交番載荷 実験の解析を行った。結論を以下にまとめる。

(1) 実橋脚の縮尺約 1/3 の壁式 RC 橋脚において, 実験後観察された座屈長は,軸方向鉄筋,帯鉄筋及 び鋼板をそれぞれはりとばねでモデル化し,弾性座 屈理論を用いて算出した値と同程度であり,座屈領 域の予測が可能であることがわかった。

(2) 中間帯鉄筋を有さない壁式 RC 橋脚の,軸方 向鉄筋降伏以後,最大耐力を経て徐々に耐力が低下 していく現象を,静的格子モデル解析によってほぼ 予測できることがわかった。一方,中間帯鉄筋を有 する場合には,解析モデルの3次元化の必要性が示 唆された。 謝辞:本研究の一部は,平成13年度科学研究費補助 金・基盤研究A1「鉄筋コンクリート構造物の耐震補 強工法に関する研究」(研究代表者:町田篤彦,課題 番号:11355020)を受けて行いました。ご協力頂き ましたことに深く感謝致します。

参考文献

- 1)須田久美子,村山八洲雄,一宮利通,新保弘:交番繰返し荷重下における柱筋の座屈挙動,コンクリート工学 年次論文報告集, Vol.16, No.2, pp.467-472,1994.
- 二羽淳一郎,崔益暢,田辺忠顕:鉄筋コンクリートは りのせん断耐荷機構に関する解析的研究,土木学会論文 集, No.508/V-26, pp.79-88, 1995.2.
- 3) 三木朋広, Lertsamattiyakul, M., 二羽淳一郎:格子モデ ルによる軸力と曲げを受ける RC 柱部材の塑性変形性能 の予測,コンクリート工学年次論文集, Vol.23, No.3, pp.199-204, 2001.
- 4) Mander, J. B., Priestley, M. J. N. and Park, R.: Theoretical Stress Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, Journal of Structural Engineering, Vol.114, No.8, pp.1804-1826, Aug., 1988.
- Vecchio, F. J. and Collins, M. P.: The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, Vol.83, No.2, pp.219-231, Mar./Apr., 1986.
- Dhakal, R. P.: Enhanced Fiber Model in Highly Inelastic Range and Seismic Performance Assessment of Reinforced Concrete, Doctoral thesis, The University of Tokyo, Sep. 2000.
- Kato, B.: Mechanical Properties of Steel under Load Cycles Idealizing Seismic Action, CEB Bulletin D'Information, No.131, pp.7-27, 1979.
- 福浦尚之,前川宏一: RC 非線形解析に用いる鉄筋の繰返し履歴モデル,土木学会論文集,No.564/V-35, pp.291-295,1997.5.
- 9) 土屋智史,津野和宏,前川宏一:常時偏心軸力と交番 ねじり・曲げ/せん断力を複合載荷した RC 柱の非線形三 次元有限要素立体解析,土木学会論文集,No.683/V-52, pp.131-143,2001.8.
- 10)藤原保久,和田宣史,後藤貴四男,佐竹亨:壁式 RC 橋脚耐震補強工法(AWS 工法)の開発と実用化,土木 学会耐震補強・補修技術,耐震診断技術に関するシンポ ジウム, pp.95-102, 1997.7.