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ABSTRACT: This paper describes the seismic behavior of RC columns having different bond 
conditions of longitudinal bars to concrete. Four RC columns were tested up to final failure under 
reversed cyclic load. Bond conditions were varied between perfect bond and no bond. It was 
observed that the ductility of an un-bonded specimen was improved significantly compared to the 
bonded specimen and the final failure was changed from shear to flexure. 
KEYWORDS: reinforced concrete, flexural capacity, shear capacity, ductility, bond 
characteristics of reinforcement 
 
 
1. INTRODUCTION 
 
     It has been confirmed that the use of deformed bars ensures good adhesion between the 
reinforcement and adjoining concrete that is essential for composite behavior of reinforced 
concrete (RC) structures. Many research have been conducted on bond, based on rib geometry, 
rib spacing and surface condition of bars, with a view to study and improve the bond 
characteristics of RC structures [1-3]. However, there has been only a few studies on the effects 
of bond on shear behavior of RC structures. Deformed bars with good bond can reduce shear 
carrying capacity of RC members due to formation of tensile cracks at the bar surface [4]. Such 
cracks may induce diagonal shear cracks depending on the stress states of RC member concerned 
[5], and then finally shear failure occurs.  
     It is well known that the ultimate failure mode and shear strength are influenced by the 
bond condition of reinforcing bars in RC members. It was reported by Kani [6] that RC beams 
with weaker bond showed higher shear strengths of more than 31% compared to beams with 
perfect bond. Ikeda and Uji [7] showed that the failure mode of RC beams could change 
depending on the bond condition of steel bars and this mechanism could be made clear by a finite 
element analysis. Ranasinghe et al. [8] reported that the shear strength of a RC beam with no 
bond is about 90% higher than that of the beam with perfect bond. Thus, it can be concluded that 
the shear behavior of RC beams must be governed by the bond condition of reinforcing bars. 
However, these studies were conducted on beams under monotonic loading and so far very little 
research has been done on the shear behavior of RC members with un-bonded bars under 
reversed cyclic loading. The objective of this study, therefore, is to clarify the effects of bond of 
reinforcement on shear behavior of RC columns under cyclic loading. 
 
 
2. EXPERIMENTAL PROGRAM 
      
Four RC columns having different bond conditions in the longitudinal bars were tested. 
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Table 2. Details 

 

Deformed steel bars were used for main reinforcement as well as for the lateral ties. Table 1 
shows the mechanical characteristics of reinforcements.  
 
     To make un-bond conditions of bars, sheaths 
in which deformed bars were placed, were installed 
before placing the concrete. Length of un-bonded 
area and pattern of un-bonded bars were varied 
among the specimens as shown in Table 2. Details of specimens are shown in Fig, 1. 
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Fig. 1 Reinforcement Arrangement of Specimens (Dimensions in mm) 
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Table 3. Test Results 

time of testing. Fig. 2 shows the loading setup.   
     Displacements were measured at each 
step of loading with three repetitions. Strains 
in the longitudinal bars and in the lateral ties 
were recorded at three different locations of 
specimens. 
  
 
3. RESULTS AND DISCUSSION 
 
     Control specimen R1, and specimens R2 
and R3 failed in shear. Specimen R4, however, 
failed in flexure. Table 3 shows the test results 
from the experiments. Fig. 3 shows the crack 
patterns observed during the first three loading 
steps in all specimens. Closely spaced flexural 

Displacement (mm) Load (kSpecimen 
No. δy δu Py 
R1 9.66 15.74 117.02 
R2 8.43 18.02 108.68 
R3 9.20 18.64 112.97 
R4 13.7 46.8 119.49 
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         Fig. 2 Loading Setup 
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cracks were observed for 
specimens R1 and R3, 
whereas crack spacing 
increased markedly for 
specimen R2. The reason for 
this can be due to the fact that 
most of the bars of specimen 
R2 were un-bonded in the 
maximum moment region. 
The reduction in the crack 
spacing for R3 could be due to 
the fact that smaller number of 
bars were un-bonded for R3 
compared to R2. During the 
initial loading, flexural cracks 
in R1 and R3 were 
concentrated in the 1/3 region 
of the column height from the 
bottom. However, for 
specimen R2, cracks appeared 
at relatively higher locations. 
Specimen R4 showed only 
one flexural crack at the 
column base. With further 
loading, the column rotated as 
a rigid body forming a plastic 
hinge at this crack location. 
Specimens R1, R2 and R3 
showed prominent diagonal 
shear cracks at a displacement 
of 10.4 mm. In specimen R4 
any diagonal cracks did not 
occur during the loading. No 
significant spalling was 
visible in any of the 
specimens. 
     Fig.4 shows the 
hysteretic load displacement 
curves and Fig.5 shows the 
load-displacement skeleton 
curves and for all specimens. 
Specimens R1, R2 and R3 
showed diagonal shear failures 
at a displacement of 15.6mm. 
Specimen R4 showed a 
reduction of load below 80% of the ma
also showed the largest ductility among
of energy absorption characteristics, wh
of specimens became reduced when the
fig. 5.  
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   Fig. 4 Load Displacement Relationships 
ximum load at a displacement of 46.8mm. This specimen 
 all specimens. However, this was achieved at the expense 
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 number of un-bonded bars increased, as can be seen from 
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     Yielding of longitudinal reinforcements occurred in all specimens. Strains in un-bonded 
bars were uniform throughout the un-bonded region. These strains were found to be much lower 
than those in the bonded regions of the same bars as well as the strains in the bonded bars. Due to 
un-bonded bars in the shear region, very high stresses were generated in the anchorage zone 
resulting in higher steel strains. In specimens R1 to R3, lateral ties 450mm from the column base 
were broken prior to failure of specimens. 
      
      
 
 
                     
 
          

Deformations of the specimens could be divided into two parts for the specimens R1, R2 and R3. 
During initial stages of loading, flexural deformations dominated. However, as the loading 
progressed, diagonal shear cracks occurred and started to widen. Thereafter shear deformations 
dominated. After this stage, on reversal of load, shear force was resisted by the interlocking 
action of cracked concrete along the main crack. This explains the difference in load capacities 
observed for loading and unloading. The hysteretic behavior of specimen R4 was similar to the 
hysteretic behavior of steel alone. In this specimen, there was no shear deformation and strains in 
the lateral ties were very low even at failure. 
 
 
4. CONCLUSIONS 
 
     Four RC column specimens having different bond conditions of longitudinal bars were 
tested up to failure under reversed cyclic loading. From the results, the following conclusions can 
be drawn. 
 

1. Ductility of RC columns can be improved greatly by un-bond
columns.  

2. Load capacity of columns does not reduce significantly due to
bars. 

3. Cracking of concrete in the critical shear region can be reduce
However, the presence of any bars with bond induces crack
become a diagonal shear crack. 

4. For fully un-bonded specimen, cracking concentrates at the 
and a plastic hinge forms, thereby increasing the displacement 

  
 

 
 

  Fig.5 Load Displacement Skeleton Curves 
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