論文 繊維補強された超軽量コンクリートの破壊力学特性値に関する実験 的研究

雨宮 美子*1·川口 哲生*2·二羽 淳一郎*3

要旨:超軽量人工骨材を使用したコンクリートに, 靱性向上のため, 各種短繊維を混入し, 破壊力学特性に及ぼす影響を検討した。その結果, 短繊維補強は非常に効果があり, また, 短繊維の種類と混入量に影響されることが確認できた。さらに, リガメント部のひび割れの X線撮影を行うことによって, 破壊エネルギーの値と, ひび割れの分散の関係について検討 した。ひび割れは,破壊エネルギーが大きくなるほど分散する傾向があることが確認できた。 また, はりの載荷実験を行い, 短繊維補強の効果について検討した。短繊維補強は, 部材レ ベルにおいても有効であることが確認された。

キーワード:超軽量人工骨材,破壊力学特性,短繊維補強,ひび割れのX線撮影

1. はじめに

超軽量コンクリートは、その特性を活かし、 様々な構造物に使用されている。

本研究では,超軽量コンクリートの靭性向上 のため,各種短繊維を混入し,短繊維補強が超 軽量コンクリートの破壊力学特性に及ぼす影響 を要素レベルと部材レベルの2つから検討した。

使用した短繊維は、ビニロン (PVA) 短繊維, ポリエチレン (PE) 短繊維,ステンレス鋼(SS) 短繊維の3種類であり、ステンレス鋼短繊維は ビニロン短繊維と混ぜて混入した。いずれも短 繊維混入量を変化させ、実験を行った。

PVA 短繊維は,低密度でかつ,付着性,耐ア ルカリ性に優れている。PE 短繊維は,PVA 短繊 維より引張強度,ヤング率が大きく,低密度で あり,表面の加工により,付着性が改善されて いる。SS 短繊維は,PVA 短繊維,PE 短繊維と 比較すると密度は大きいが,PVA 短繊維を減ら すことにより,コンクリートの施工性が改善す ると考えられる。

まず,要素レベルの実験として,破壊エネル ギーと引張軟化曲線を算出した。

さらに、リガメント部のひび割れのX線撮影

を行い,破壊エネルギーとひび割れの分散の関 係について考察した。

部材レベルの実験として, 短繊維混入量 1.0% のはり供試体を作成し, 載荷実験を行った。

2. 実験概要

2.1 実験ケース

実験ケースを表-1に示す。

本実験で使用したコンクリート材料を表-2, 使用した短繊維の物性値を表-3に示す。

コンクリートの示方配合を表-4に示す。

短繊維補強していない超軽量コンクリートを SLC とする。PVA 短繊維補強超軽量コンクリー トを PVA-SLC とし, PE 短繊維補強超軽量コ ンクリートを PE-SLC とする。短繊維混入量を

表-1 実験ケース

短繊維 混入量 (vol.%)	SLC	PVA- SLC	PE- SLC	PVS- SLC
0				
0.3		0	0	
0.5		0	0	
0.6				0
1.0				

※●は、はりの載荷実験も行った。

*1 東京工業大学大学院 理工学研究科土木工学専攻 (正会員)

*2 東京工業大学大学院 理工学研究科土木工学専攻 (正会員)

*3 東京工業大学大学院教授 理工学研究科土木工学専攻 工博 (正会員)

種類	密度 (t/m ³)	その他
普通セメント:C	3.14	比表面積: 3310cm ² /g
早強セメント:C	3.16	比表面積:4550cm ² /g
千葉県小櫃産陸砂:S	2.59	粗粒率:2.5
招軽量人工骨材・G	0.88	吸水率:2.1%
炮程重八工日初,0	0.00	G _{max} :15mm
高性能AE減水剤	1.00	ポリカルボン酸系
助剤	1.00	

表-2 使用したコンクリート材料

表-3 使用した繊維の物性値

短繊維種類	PVA	PE	SS
タイプ	集束	集束	薄板せん断
繊度 (dtex)* ¹⁾	1800	3500	
密度 (t/m³)	1.30	0.97	7.70
アスペクト比	63.2	30.0	62.5
カット長 (mm)	24	30	25
寸法 (mm)	φ 0.38	φ1.00	0.3×0.5
引張強度 (GPa)	0.88	1.80	0.45
ヤング率 (GPa)	29.4	61.6	200

*1)1dtex は糸長 10000mの糸質量が1g であることを示す。

表一4 示方配合

	W/C	s/a			単位	Ī量	(k	g / m ³)		材齢	スランプ
供試体名	(%)	(%)	W	C	S	G	高性能AE 減水剤	助剤	繊維	(日)	(cm)
SLC	40	53	188	469	907	257	2.3	2.3	0	28	4.3
PVA-SLC 0.3%	40	53	188	469	908	258	2.3	2.3	3.9	7	4.7
PVA-SLC 0.5%	40	53	188	469	907	257	3.8	3.8	6.5	28	9.0
PVA-SLC 1.0%	40	55	191	477	927	235	7.2	7.2	13	28	2.1
PE-SLC 0.3%	40	53	188	469	907	257	2.3	2.3	2.9	28	5.1
PE-SLC 0.5%	40	53	188	469	907	257	3.8	3.8	4.9	28	9.5
PE-SLC 1.0%	40	55	191	477	933	244	7.2	7.2	9.7	28	8.1
PVS-SLC 0.6%	40	53	188	469	907	257	3.8	3.8	6.5(PVA) 20.5(SS)	28	6.5
PVS-SLC 1.0%	40	55	191	477	933	244	5.7	5.7	13.0(PVA) 32.0(SS)	28	8.0

それぞれ, コンクート体積あたり 0.3%, 0.5%, 1.0%とする。PVA-SLC 0.3%は, 早強セメント を使用している。

さらに、PVA 短繊維と SS 短繊維を同量ずつ 混入した超軽量コンクリートを PVS-SLC とし、 コンクート体積あたり全繊維混入量を 0.6%と 1.0%とする。

実験値は各ケース供試体2体の平均値とした.

2.3 破壊力学特性值供試体概要

試験方法として、コンパクトテンション(CT) 法を採用した。供試体概要を $\mathbf{20}-1$ に示す。荷 重軟化域で繰り返し載荷を行い、ひび割れの進 展を評価するため、 π 型変位計をリガメント部 の片側に3個、反対側に2個の合計5個を11mm 間隔で設置した。載荷速度を0.1mm/min とした 変位制御の載荷を行った。

2.4 破壞力学特性值算出方法

破壊エネルギーG_Fは,式(1)より求める。

$$G_{\rm F} = (W_{\rm o} + mg\delta_{\rm o}) / A_{\rm lig}$$
(1)

ただし、 W_o :実測された荷重一変位曲線下の面 積(本研究では最大荷重後,最大荷重の20%の 値になるまで測定することにした)、mg:供試 体の2分の1重量, δ_o :測定終了時の変位, A_{lig} : リガメント面積を表す。

引張軟化曲線は拡張 J 積分法¹⁾を用いて求め た。拡張 J 積分法は加えられたエネルギーのう ち一部は弾性エネルギーとして,解放されると して,繰り返し載荷を行い除荷-再載荷パスの 定式化を行う。また,リガメント部分に設置し た 5 個の π型変位計よりひび割れ進展状況を測 定し,ひび割れ進展についても定式化する。

なお,引張軟化曲線の軟化開始応力は推定値 であり,使用するデータに依存するため,ばら

つきが大きくなる。そこで本研究では, コンク リートの割裂引張強度で置き換えることにした。

2.5 ひび割れの X 線撮影方法

X線には、透過物質の密度の違いにより透過 する線量が変化する性質がある。この透過線量 の違いは、X線フィルム上では濃度の差として 現れる。大塚²⁾はコンクリート内部の微小なひ び割れの検出を行うため、独自で選定した造影 剤を用いて、供試体内部の鉄筋周辺に発生、成 長する微細ひび割れを検出した。

本研究では、造影剤としてジョードメタン (CH₂I₂)を用いて、リガメント部のひび割れの 検出を行った。X線透過時間は6分とした。

供試体概要図を図-2に示す。コンパクトテン ション法と同様に荷重をかけ、荷重除荷時にひ び割れが閉じないように、荷重を保持したまま で切り欠き部分にアルミ板を挿入した。

2.6 はりの載荷実験

供試体概要を図-3に示す。

供試体の形状は,斜め引張破壊するように, せん断スパン比 a/d は 3.5 とし,有効高さは 140mm,せん断スパンは 490mm,軸方向筋に SD345 異形鉄筋(f_y=380N/mm²)を使用し,軸方 向鋼材比を 1.8%とした。また載荷に際して,試 験体の支点はローラー支持とし,支点の拘束に よる水平反力が発生しないように支点上にテフ ロンシートを挿入し,荷重制御の試験機により 静的載荷を行った。

3. 実験結果

3.1 破壊力学特性値

実験より得られた超軽量コンクリートの材料 特性および破壊エネルギーを**表-5**に示す。

CEB-FIP Model Code90 では破壊エネルギー は、コンクリートの圧縮強度と骨材の最大寸法 の関数として与えられている。

供試体名	密度 (t/m ³)	f _c ' (MPa)	f _t (MPa)	G _F (N/m)
SLC	1.81	31.0	2.76	54.0
PVA-SLC0.3%	1.81	31.8	2.40	99.4
PVA-SLC0.5%	1.81	31.3	2.78	226.1
PVA-SLC1.0%	1.85	30.0	2.89	893.6
PE-SLC0.3%	1.81	30.4	2.74	204.4
PE-SLC0.5%	1.81	29.8	2.54	862.2
PE-SLC1.0%	1.84	26.0	2.64	1386.5
PVS-SLC0.6%	1.83	31.1	2.66	242.4
PVS-SLC1.0%	1.88	30.9	2.85	697.1

表-5 破壊力学特性値の実験結果

そこで本研究でも、式(2)よりコンクリートの 最大骨材寸法に依存する破壊エネルギーの基本 値 G_{FO} を求め、 G_{FO} を材料の特性値として、比 較することにした(図-4)。

$$G_{FO} = G_F / (f_c' / f_{co})^{0.7}$$
 (2)

ただし , G_F:破壊エネルギー(N/m), f_c': コン クリートの圧縮強度(MPa), f_{co}:定数(10MPa)

図-4からわかるように,SLCは繊維補強されることにより,G_{FO}の値が増加していく。さらに,この効果は,短繊維混入量が多くなるほど大きい。

CEB-FIP Model Code90 では, 普通コンクリー トで, 最大骨材寸法 16mm の場合 G_{FO} の値を 30N/m と定義している。実験から得られた G_{FO} の値は, 繊維混入量 0.3%という短繊維混入量が 少量のケースでも, 44~90N/m となっており, 効果のあることがわかる。

また,補強の効果は短繊維の種類に依存して いることも確認できた。

図-5に PVA-SLC 0.5%と PE-SLC 0.5%の 引張軟化曲線を示す。PE-SLC の第1軟化勾配 は、PVA-SLC の第1軟化勾配より緩やかであ る。しかし、PE-SLC は、引張軟化曲線のブレ ークポイントの引張応力が、PVA-SLC のブレ ークポイントの引張応力の値より小さくなり、 軟化開始応力の5分の1程度まで減少している。 PE-SLC 1.0%は、図-6に示すように、ブレー クポイントにおける引張応力の急激な減少は見 られない。

使用した PE 短繊維は, PVA 短繊維と比較し て, ヤング率が大きい (**表**-**3** 参照)。このた め, 緩やかな第1軟化勾配になったと考えるこ とができる。

また、繊維とセメントマトリックスとの付着 は、化学付着と摩擦付着の2つに分けられる。 使用した集束タイプのPVA 短繊維とPE 短繊維 の化学付着強度と摩擦付着強度の明確な値は、 現在までのところ得られてはいないが、引張軟 化曲線の形態の違いは、それぞれの付着強度の

写真-1 リガメント部のひび割れ X 線透過写真

違いによるものであると推測できる。

また、PVS-SLC の場合、PVA-SLC より G_{FO} の値は小さくなるが、PVA-SLC 1.0%のスラン プ値が 2.1cm だったのに対し、PVS-SLC 1.0% のスランプ値は、8.0cm となり、流動性は改善 された。しかも、PVS-SLC 1.0%の G_{FO} 値は、 SLC の G_{FO} 値の 13 倍にも増加し、大幅に改善 されることが確認できた。

3.2 ひび割れのX線撮影

X線により撮影した透過写真を**写真-1**に示 す。各供試体のリガメント部に発生したひび割 れが分散している面積を画像解析により求め, 破壊エネルギーとの関係を**図-7**に示す。

撮影された透過写真は実際の供試体の大きさ よりも拡大されて映し出されるため、求めた面 積は、実際のひび割れが分散している面積と完 全には一致していない。

そこで, SLC の破壊エネルギーとひび割れが 分散している面積の値を基準値として,G:各 供試体の破壊エネルギー/SLC の破壊エネルギ ー,S:各供試体のリガメント部に発生したひび 割れの分散面積/SLC のリガメント部に発生し たひび割れの分散面積と定義する。

ただし,破壊エネルギーは,X線撮影で用い た供試体から求めたものではなく,同じケース の供試体2体の測定結果の平均値である。

図-7よりひび割れの分散は、コンクリート に混入する短繊維の量に影響され、破壊エネル ギーが増加するにつれて、リガメント部に発生

したひび割れが分散している面積は直線的に増加していることが確認できた。

3.3 はりの載荷実験

実験より得られた各ケースの荷重-変位曲線 を**図-8**に示す。

SLC は斜め引張破壊であった。しかし,短繊 維混入量 1.0%のケースは,破壊の形態が変化し, 曲げ破壊となることが確認された。これは,短 繊維が,ひび割れが発生したはりの引張応力を 分担したためであると考えられる。

このように, 短繊維補強は, 部材レベルにお いても有効であることが確認できた。

表-6に、実験より得られた耐力とせん断耐 力算定式による算出結果、および曲げ耐力算出 結果の比較を示す。

せん断補強を行っていない RC はりのせん断 耐力算定式として,式(3)に示す土木学会標準示 方書式³⁾を用いて,実験値との比較を行った。

DAM ALT: D	(MPa)	(kN)	• u.exp/ • u.cai
SLC	31.0	45.5	0.87
PVA- SLC1.0%	30.0	83.3	0.95
PE- SLC1.0%	26.0	82.7	1.02
PVS- SLC1.0%	30.9	89.2	1.00

$$V_{u.cal} = 0.20 f_c^{,1/3} d^{-1/4} p_w^{,1/3} b_w d$$
(3)

f_c':コンクリート圧縮強度(MPa), p_w:軸方向鉄筋 比(%), d:有効高さ(m), a:せん断スパン, b_w: ウェブ幅(m)。

また,曲げ耐力は,等価応力ブロックを用い て求めた。

せん断破壊した SLC に関しては,超軽量 RC はりのため,実験値は若干小さい値となったが, 曲げ破壊したケースは,実験値は,算出値の95% から102%の値を示していることが確認できる。

はりのひび割れ状況を図-9に示す。繊維な しコンクリートの場合,斜めせん断ひび割れが 発生しているが,短繊維補強されたケースは, 多くの曲げひび割れが発生していることが目視 により確認できた。

4. 結論

本研究により次の結果が得られた。

(1) 軽量コンクリートは, 短繊維補強を行うと により, 破壊エネルギーが向上する。この効果 は, 混入する短繊維の種類と混入量に依存する。

(2) リガメント部のひび割れの X 線撮影により,破壊エネルギーが大きいほど,リガメント 部に発生するひび割れの分散している面積が増 加することがわかった。

(3) はりの載荷実験から, 短繊維補強は部材レベルにおいても有効であることが確認できた。

謝辞

本研究を行うに当たり, 短繊維を提供いただ いた(株)ユニチカ, 東洋紡績(株), 日本冶金 工業(株)に感謝の意を表します。

参考文献

 1)二羽淳一郎, Taweechai SUMRANWANICH, 松尾豊史:コンクリートの引張軟化曲線決定に 関する実験的研究,土木学会論文集,No.606, V-41,pp.75-88,1998.11
2)大塚浩司:X線造影撮影による鉄筋コンクリ ート内部の微細ひび割れ検出に関する研究,土 木学会論文集,No.451,V-17,pp.165-178,1992.8

3)土木学会:平成8年度制定コンクリート標準 示方書,設計編