論文 杭主筋を基礎に定着しない杭頭接合部の構造性能

安田 聡*1・小室 努*2・辰濃 達*2・川端 一三*2

要旨: 杭頭部の回転剛性を制御するため杭頭部を円錐状に成形し, 杭主筋を基礎に定着し ない場所打ち鉄筋コンクリート杭について, その構造性能を把握するために大型模型実験 を実施した。試験体は計5体で, それぞれ杭頭ディテールを変化させ, また, 異なる軸力 の杭頭回転性能を確認する目的で,5または4レベルの軸力(杭頭接触面応力0~20N/mm²) を変化させた。実験の結果,本接合方式の杭頭モーメント-回転角関係は終始安定した履 歴性状を示すとともに,杭頭モーメントは低減され杭頭部の損傷を軽微に抑えられること を明らかにした。

キーワード:場所打ちRC杭,主筋非定着,杭頭固定度,異形PC鋼棒,芯鉄筋

1. はじめに

これまでに筆者らは,場所打ち鉄筋コンク リート杭の主筋を基礎に定着しない杭の開発を 行っており,1998年に実施した実験¹⁾によりそ の有用性を確認し,既に実施適用している。こ の杭頭接合法は,地震時の杭頭部に生じる応力 を従来(剛接合)より半分程度に低減できるた め,杭体の変形性能の向上および基礎梁・基礎 マットの合理化が可能となっている。

本研究では,杭主筋を基礎に定着しない杭に ついて,さらに杭頭部の回転剛性を制御するた め杭頭部を円錐状に成形した杭頭接合部の構造 性能を把握するために構造実験を実施した。本 報ではその実験結果について述べる。

2. 実験計画

2.1 試験体

表 - 1 に試験体一覧を,図 - 1 に各試験体の 杭頭ディテールを示す。図 - 2 に試験体の配筋 図を示す。試験体は長さ3m,直径 500の場所 打ち鉄筋コンクリート杭で,せん断補強筋に高 強度異形PC鋼棒(SBPD1275/1420)を使用した。 いずれの試験体も,杭頭の回転性能を高めると ともに地震時の杭頭部の圧壊を防止するため

*1 大成建設(株) 技術センター (正会員) *2 大成建設(株) 構造設計部 (正会員)

表 - 1 試験体一覧

					() 1/	2)	
試験	杭径	而拚	芯绊筋		_₿ (IN/M	m²)	杭頭部 状態
体	(mm)	HCAN		基礎	杭頭	杭体	
No.1		主筋:	-	36.8	51.0	36.1	接触のみ
No.2	杭軸径 500 杭頭径 350	16-D13	9-D16	38.2	52.6	38.0	芯鉄筋
No.3		抗頭径 帯筋: 350 U5.1-@40	-	39.7	54.3	40.0	のみ込み
No.4			9-D16	40.8	55.6	42.5	ダボ鉄筋
No.5		(pw=0.2%)	9- 17	41.5	56.4	43.9	アンホ・ント・

。: コンクリートの実験時圧縮強度

図 - 1 杭頭部の形状

に, 杭頭部を円錐状に成形し, 杭軸部と杭頭部 (基礎との接触面)の断面積を2:1となるよう にしている。

試験体数は5体で,それぞれ杭頭ディテール を変化させた。No.1は,杭頭と基礎は接するの みとした。No.2は,杭に引張力が生じる場合を 想定し,芯鉄筋を配して基礎側に定着させた。 No.1に対して杭頭部のせん断伝達能力を高める ために,No.3は杭頭部を基礎側へ25mmのみこ ませ,No.4はダボ鉄筋を配した。No.5は,No.2 より杭頭の回転性能を高めるために,芯鉄筋の 周囲を全長にわたりアンボンド処理し,両端部 に定着板を配した。

2.2 使用材料および製作方法

表 - 2に使用した鉄筋の機械的性質を,表 -1にコンクリートの材料試験結果を示す。杭軸 部のコンクリート強度(呼び強度Fc30)に対し て,杭頭部(基礎面から110mmの範囲)のコン クリート強度は軸力の集中を考慮して,呼び強 度Fc48を用いた。試験体は,加力装置の都合上, 杭体と基礎スタブの位置関係を逆にした状態で 製作した。試験体のコンクリート打設は縦打と し,基礎(Fc30) 杭頭部(Fc48) 杭軸部(Fc30) の3段階に分けて打設した。No.3では,基礎ス タブ上面にのみ込み深さ25mmの円錐状の凹部 を設けて,その底面を打継部とした。

2.3 加力方法

図 - 3に加力装置を示す。杭体と基礎の位置 関係を逆にした状態で試験体をセット し,試験体杭最上部を杭先端とした。試 験体の実験時応力状態は,地震時の杭 の応力状態を模擬することを目的とし て,杭先端(反力ブロック)をピン支持 し,杭長中間部(加力ブロック)にせん 断力を作用させた。加力は,一定軸力下 における正負繰返し載荷とし,加力ブ ロック下部(杭頭側)の杭に対する部材 角R₁で制御した。杭への軸力はPC鋼棒 により与え,常に軸力を一定に保持す るように制御した。 本実験では,1つの試験体で加力位置を変え た載荷を行った。載荷1では,加力ブロック中 心が基礎スタブ上面から3D(D:杭径)となる ように,載荷2では1.5Dとなるようにした。

表-2 鉄筋の機械的性質

插粨	留種	降伏点	引張強度	伸び	使田笛氏	
11279	」 「」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」	(N/mm²)	(N/mm²)	(%)	区市国///	
D13	SD390	447	662	14.0	主筋	
D16	SD685	757	972	8.8	No.2-4芯鉄筋	
U5.1	SBPD1275/1420	1453	1453	8.7	せん断補強筋	
17	SBPR1080/1230	1176	1268	13.0	芯鉄筋 アンボンド	

表-3 加力サイクルと軸力

載荷1				載荷2		
サイクル		<i>R</i> 1		サイクル		<i>R</i> 1
	N/mm ²	rad.			N/mm ²	rad.
1		± 1/400		1~2	20	± 1/100
2~3		± 1/200		3~4	(10)	± 1/75
4~5	10	± 1/100		5~6	15 ¹	± 1/100
6~7	(5)	± 1/50		7~8	(7.5)	± 1/50
8~9		± 1/30 ³		9~10	10	± 1/100
10~11	20	± 1/100		11 ~ 12	(5)	± 1/50
12~13	(10)	± 1/50		13~14	5	± 1/100
14 ~ 15	15 ¹	± 1/100		15 ~ 16	(2.5)	± 1/50
16~17	(7.5)	± 1/50		17 ~ 18		± 1/100
18~19	5	± 1/100		19~20	0 ²	± 1/50
20 ~ 21	(2.5)	± 1/50		21		押切
22 ~ 23	0 2	± 1/100				
24 ~ 25		± 1/50	1			

:接触面の応力.()内は軸部の応力を示す.

1:No.1およびNo.2のみ載荷.

No.1およびNo.3は自重を含め =1N/mm²を載荷.
 No.2,4,5は自重分のみ(=0.5N/mm²)を負荷.

図 - 3 加力装置

また,異なる軸力の杭頭回転性能を確認する 目的で,それぞれの加力位置で,5または4レベ ルの軸力を変化させた。表-3に加力サイクル と軸力の関係を示す。長期軸力に相当する σ =10N/mm²を基準軸力とし,短期軸力相当の変 動幅±10N/mm²の軸力を作用させた。なお,載 荷1の載荷が終了した後,小振幅の繰返し載荷 を行い,無負荷状態で試験体の残留変形が0に なるように調整してから,次の軸力レベルおよ び載荷2の加力を行った。

3. 実験結果

3.1 荷重 - 変形関係および破壊性状

に関しては,各試験体ともに曲げ降伏型の履歴 性状を示し,図-7に示す包絡線においても試 験体間で大きな差は見られなかった。

図 - 5にNo.1,2の杭頭応力 σ=10N/mm², R₁=1/ 50時のひび割れ発生状況を示す。ひび割れなど の諸現象発生順序は,各試験体ともに同様の傾 向を示した。杭頭応力 σ=10N/mm²の処女載荷に おいて,加力ブロック下部(杭頭側)では,部 材角R₁=1/400でせん断ひび割れに先行して曲げ ひび割れが発生し, R₁=1/200で加力ブロック近 傍の主筋が引張降伏し,次いでR₁=1/100で加力 ブロック上側のコンクリートが圧壊した。

杭頭部には,いずれの試験体も曲げひび割れ は発生しておらず損傷は軽微であったが,芯鉄 筋を有するNo.2,No.4の杭頭部には,杭頭応力 10N/mm²のR₁=1/50で材軸方向に若干の縦ひび 割れが発生した。この縦ひび割れは基礎スタブ と接触していない側に発生している。これは, 芯鉄筋(ダボ鉄筋)が伝達するせん断力に対応 する反力(引き戻す力)が杭頭部に作用したた めと考えられる。

せん断力の入力を大きくした載荷2において も,各試験体ともに杭体はせん断破壊せず,接 合面のすべりの有無が実験最終状態であった。

なお,いずれの試験体も実験終了後の基礎ス タブの杭頭との接触面には,若干のくぼみ (1mm程度)が観察された。

3.2 杭頭部の曲げモーメント - 回転角関係

図 - 6に杭頭部の曲げモーメントM₄ - 回転角 θ関係を示す。図 - 8 に杭頭応力 σ=10N/mm²の 処女載荷における各試験体の包絡線を示す。図 中の破線は後述する最大耐力の計算値である。 抗頭回転角 θ は,杭対面2点の鉛直相対変位(杭 の押込み,引抜け量)の差を測定スパンで除し て求めた。基礎と接触するのみのNo.1は,履歴 ループ面積を持たない非線形弾性の履歴性状を 示し,その除荷経路は載荷経路をもどる傾向を 示した。芯鉄筋を有する No.2 は No.1 と比較し て大きな杭頭モーメントが作用しており,また 履歴ループは面積を持っている。杭頭部を基礎 にのみ込ませたNo.3は、No.1とほぼ同様の履歴 性状を示し、ダボ鉄筋を有するNo.4は、No.1と No.2の中間的な履歴性状を示した。No.5のみ杭 頭回転角1/30を超える載荷を行ったが,耐力の 低下は見られず、安定した履歴性状を示した。 芯鉄筋をアンボンド処理したことで ,No.2より も同一回転角に対する杭頭モーメントは若干低 くなっている。

図 - 9に既報1)の試験体と比較した*M*₁ - θ関 係を示す。縦軸の杭頭モーメントは*N・D/2(N*: 軸力,*D*:杭径)で除すことで無次元化してN る。図-10に既報1)の杭頭形状を示す。PL-2は

図 - 7 $Q_1 - R_1$ 関係(包絡線)

図 - 8 *M*₁ - 関係

関係(包絡線)

図 - 9 M₄ - 関係(既報¹⁾との比較)

杭主筋を基礎に定着させた従来の接合形式であ り,PL-5は杭主筋を基礎に定着させず,杭頭部 を基礎にのみ込ませた試験体である。杭主筋を 基礎に定着しないことで,杭頭モーメントは半 分程度に低減され,さらに杭頭部を円錐状に成 形することで杭頭部の回転変形性能が大きく なっていることがわかる。

3.3 杭頭接合部のすべり挙動

表 - 4に杭頭接合部のすべり発生時(破壊時) の一覧表を示す。No.1 は,載荷1および載荷2 の低軸力負荷時にすべりが発生した。すべり発 生時の摩擦係数(Q₁/N)は載荷1:0.80,載荷2: 0.71であった。芯鉄筋を有するNo.2,5にすべり は発生していない。杭頭部を基礎にのみ込ませ たNo.3 は,載荷2の軸力 0の加力時に杭頭の のみ込み部分がテーパーに沿ってせりあがるよ うなすべりを生じた。テーパー傾斜方向におけ るすべり発生時の摩擦係数は0.78 であった。

表 - 5にNo.4のダボ鉄筋による伝達せん断強 度計算値と実験値の比較を示す。ダボ鉄筋を有 するNo.4は,軸力 0の加力時に杭頭末端のせ ん断補強筋が破断し,ダボ鉄筋ののみ込み範囲 における杭頭コンクリートが破壊した。これ は,接触面近傍のせん断補強筋(3巻き分)が負 担できるせん断抵抗力 Q_{ds}よりも杭頭に作用す るせん断力が大きくなったためである。なお, 下記に示す(2)式³⁾で求まる鉄筋のダボ作用によ る伝達せん断力Q_dは,実験時の作用せん断力よ りも十分に大きく,実験終了後の杭頭部の観察 では,ダボ鉄筋の変形は見られなかった。

$$Q_{ds} = 2 \cdot n_s \cdot a_s \cdot \sigma_{ys} \tag{1}$$

$$Q_d = 1.3 \cdot n_D \cdot d_b^{2} \cdot \sqrt{F_c} \cdot \sigma_y \tag{2}$$

ここで n_s :接触面近傍のせん断抵抗に有効な せん断補強筋の本数 , σ_{ys} : せん断補強筋の降伏 点(N/mm²) , a_s : せん断補強筋の断面積(mm²) , d_b : 芯鉄筋の径(mm) , n_D : 芯鉄筋の本数 , F_c : コ ンクリート強度(N/mm²) , σ_y : 芯鉄筋の降伏点 (N/mm²)

No.2,5に杭頭破壊が起こらなかったのは,芯

表 - 4 杭頭接合部のすべり

****	載荷	軸力	せん断力	回転角	部材角		
 試験 休		N	Q 1		<i>R</i> 1	Q 1/N	備考
"	11 E	kN	kN	rad.	rad.		
No.1	1	99	79	0.006	1/164	0.80	すべり発生
	2	482	344	0.012	1/86	0.71	すべり発生
No.2	1	46	>190	0.021	1/48	(4.11)	すべりなし
	2	48	>524	0.039	1/25	(10.8)	すべりなし
No.3	1	95	>150	0.022	1/45	(1.57)	すべりなし
	2	101	166	0.009	1/118	1.64	すべり発生
No.4	1	50	>153	0.023	1/44	(3.08)	すべりなし
	2	50	242	0.015	1/66	4.82	杭頭コンクリート の破壊
No.5	1	50	>113	0.020	1/50	(2.25)	すべりなし
	2	50	>364	0.041	1/25	(7.27)	すべりなし

表 - 5 ダボ鉄筋による伝達せん断強度

最大	、杭頭せん断力実験値	_e Q _{max}	kN	242
計	ダボ作用	Q _d	kN	526
值	境界面近傍のせん断補強筋	Q _{ds}	kN	178
実験	è値/計算値	_e Q _{max} /	/Q _{ds}	1.36

鉄筋が定着されている場合,コンクリート接触 面には軸力に加えて曲げによる圧縮力が付加さ れるために,せん断力はダボ作用ではなく摩擦 抵抗により伝達されたためである。

4. 杭頭固定度

本研究開発の主目的は杭頭の回転自由度を従 来よりも高めることであるが,これを評価する ために(3)式で算出した杭頭固定度 (杭頭モー メント低減率)により比較を試みる。

 $\alpha = M_1 / M_c \tag{3}$

ここで, *M*₁: 杭頭モーメント実験値(kN・m), *M_c*: 杭頭固定時杭頭モーメント理論値(kN・m), *M_c*=3・P・L/16(載荷 1), *M_c*=21・P・L/128(載荷 2), P:載荷点荷重(kN), *L*: 杭長(=3.0m)

 M_c は弾性時の理論値であるため,部材角が大 きくなり部材が塑性化すると実験値との単純な 比較はできないが,図 - 11 に示す杭頭応力 σ = 10N/mm²時の α は,いずれの試験体も α =0.4 ~ 0.7 程度に低減されていることがわかる。

5. 最大耐力に関する検討

表 - 6 に載荷1, 杭頭応力10N/mm²時の処女 載荷における実験最大せん断力と計算値との比 較を示す。曲げ耐力の算定では,加力ブロック 上端に塑性ヒンジが形成された状態を最終崩壊 形として, e 関数法から得られた曲げ終局モー メントから曲げ降伏時のせん断力を求めた。せ ん断力Q,の実験値/計算値は0.98~1.04と良く 一致している。

杭頭の終局曲げモーメントの算定には,杭主筋は無視してコンクリート断面(および芯鉄筋)のみを有効とし,また,コンクリート強度は支圧効果を考慮してシリンダー圧縮強度の2倍の値($2\sigma_B$)を用いて求めた。表 - 6に最大杭頭曲げモーメント実験値と計算値の比較を示す。 $2\sigma_B$ を用いることにより,載荷1,杭頭応力10N/mm²時の処女載荷における M_1 の実験値/計算値は1.03~1.19と良い対応を示している。

ここでは, 杭頭の曲げモーメントを e 関数法 を用いて簡便に求めるに留めたが, 杭頭のめり 込みおよびコンクリートの拘束領域を考慮した 更なる検討が必要である。

杭体のせん断耐力は,既報¹⁾において,円形断 面を等断面積の正方形に置換し,終局強度型耐 震設計指針²⁾に示されているA法を用いて推定 できることを確認している。詳しくは,既報¹⁾を 参照されたい。なお,本実験の杭体のせん断余

表 - 6 最大耐力

	t	しの新力の	Q,	杭頭モーメント Mc			
試験体	実験値	計算値	実験値	実験値	計算値	実験値	
	kN	kN	計算値	kN∙m	kN∙m	計算値	
No.1	343	332	1.03	151	146	1.03	
No.2	399	384	1.04	234	218	1.07	
No.3	342	341	1.00	156	149	1.05	
No.4	358	345	1.04	178	150	1.19	
No.5	390	398	0.98	234	227	1.03	

裕度(せん断耐力計算値/曲げ降伏時のせん断力 計算値)は,載荷1:2.9~3.2,載荷2:1.4~ 1.6であり曲げ降伏型の試験体である。

6. まとめ

本実験から得られた知見を以下に要約する。

- (1) 杭頭部を円錐状に成形し,杭主筋を基礎に 定着しない杭において,杭頭部は安定した 履歴性状を示し,杭頭回転角1/30を超えて も耐力低下せず,優れた回転性能を有する。
- (2) 杭頭部を円錐状に成形し,杭主筋を基礎定着しないことにより,杭頭部に作用する曲 げモーメントは低減され,杭頭部の損傷を 軽微に抑えること,杭頭部の圧壊を防止す ることができる。
- (3) 杭頭部コンクリートと基礎コンクリートの 接触面の摩擦係数は 0.8 程度であった。
- (4) 杭頭部の最大曲げ耐力において,支圧効果 を考慮してコンクリート強度をシリンダー 圧縮強度の2倍の値を用いた場合のe関数法 による計算値は実験値と良い対応を示した。

参考文献

- 1) 是永健好ほか:異形PC鋼棒で横補強した場 所打ちRC杭の大型模型実験,コンクリート 工学年次論文報告集,Vol.21,No.3,pp.475-480,1999
- 2) 日本建築学会:鉄筋コンクリート造物の靱
 性保証型耐震設計指針(案)・同解説,1997
- 3) 塩原等:コンクリートとコンクリートの接合,コンクリート工学 Vol.34, No.6, 1996.6