報告 海洋環境下における石炭灰を使用したRC構造物の施工報告

大城 良信"・仲本 文範"・山田 義智"・大城 武"4

要旨:本施工報告では,石炭灰(以下フライアッシュと称す)を混和材として使用した コンクリートを実環境下の護岸コンクリート構造物に打設し,そのフレュシュ性状,強 度特性および乾燥収縮等を確認している。ここでは,初期性状に加え,1年半経過後の 塩分浸透性についても検討している。この現場実証試験により,フライアッシュのコ ンクリート混和材としての有効性を確認している。

キーワード:護岸コンクリート構造物、フライアッシュ,現場実証試験,塩分浸透性

1. はじめに

沖縄県内の火力発電所から発生するフライア ッシュは,年間14万トンで,その内約6万トンが セメント材料として利用され,残り8万トンが 産業廃棄物として埋立て処分されている。また, 平成14年に新たに稼働する火力発電所において, さらに年間11万トンのフライアッシュが発生す ると予測され,電力の安定供給,地域環境保全の 面からもフライアッシュの有効利用技術の開発 が望まれている。

文献¹⁾によれば,フライアッシュを混入したコ ンクリートは,普通コンクリート(以下ベースコ ンクリートと称す)に比べ,優れた遮塩性能を有 することが示されている。沖縄県は,亜熱帯海 洋性気候に属し,厳しい塩害環境下におかれて いる。そこで,フライアッシュの混入により遮 塩性の向上を期待し,新設火力発電所構内の外 洋に面した護岸コンクリートにフライアッシュ コンクリートを打設した。ここでは,セメント 代替(20%,以下内割りと称す)および細骨材代替 (80kg/m³,以下外割りと称す)で配合設計した2 種類を使用している。打設範囲は新設護岸の一 部で,各々のフライアッシュコンクリートにつ いて,護岸長5m,容量16.5m³であった。 本報告では,現場施工に際してのコンクリート配合設計,フレッシュ性状及び硬化コンクリートの特性,塩化物イオンの浸透性等に注目して報告する。

コンクリート配合決定及び室内試験結果
1 試験概要

コンクリート配合設計に先立ち,モルタル試 験を行い,そのデータに基づいてコンクリート の配合設計を行った。さらに,施工性の確認の ため,実機プラントで配合の確認を行っている。

現場施工に際しては,生コンの出荷時に工場 にて諸試験用の試料を採取し,また,施工現場に おいても同様の試料を採取した。施工後1年半 経過時にコンクリートコアを採取し,圧縮強度 試験および塩化物濃度分析を行っている。

- 2.2 コンクリートの配合
- (1) 使用材料

使用材料は,原則として現場施工に出荷する 生コン工場で通常使用しているものとした。そ の物性値を表-1,表-2に示す。フライアッシュ は,県内の火力発電所で外国産炭(豪州産;ワン ボ炭)を燃焼する際に副産さたものである。

- *1 沖縄県生コンクリート工業組合 中南部地区共同試験所試験係 (正会員)
- *2 沖縄電力(株) 電力本部発電部発電管理課副長
- *3 琉球大学 工学部環境建設工学科助手 博士(工学) (正会員)
- *4 琉球大学 沖縄職業能力開発大学校校長 Ph.D. (正会員)

(2) 配合要因

配合要因を表-3に示す。現地で施工されてい る護岸用のベースコンクリートに基づき、表-3 に示す条件で配合設計が決定された。

材 料	種類・産地	密度(g/cm³)	粗粒率
セメント	普通(N)	3.16	-
海砂	新川沖産	2.62	2.17
砕砂	本部半島産	2.67	3.10
砕石	本部半島産	2.70	60.2% *
AE減水剤	リグニンス	ルホン酸(標準	■形)
* 宝 積 玄			

表-1 使用材料の物性値

美頂榮

表-2 フライアッシュの物性値

材 料	種 類	密度	強熱減量	MB量
		(g/cm ³)	(%)	(%)
フライアッシュ	ワンボ炭	2.20	6.3	1.12
[*] JIS A	6201 種			

^{・・}オーストラリア産

	夜-3 能口安凶
要因	条件
単位水量	175kg/m³ 以下
水粉体比	60%以下
スランプ	12±2.5cm
強 度	24N/mm ² 以上(材齢 28日)
混和剤使用量	0.4(標準使用量)~0.6%
細骨材率	37 ~ 48%

記つ田田

(3) モルタル試験

コンクリートの配合設計を効率よく実施する ため,コンクリート中のモルタル部分でフロー

値を測定し,その値からコンクリートのフレッ シュ性状を推定している。本試験では、ベース 配合のモルタル部分のフロー値を基準とし,フ ライアッシュを使用した配合のフロー値と比較 している。その測定結果を表-4に示し,また,フ ライアッシュ量とフロー値の関係を図-1に示す。 これらの結果は、内割配合、外割配合ともフライ アッシュ使用量の増加に伴い,フロー値が減小 する傾向を示している。特に外割配合の場合, フライアッシュ量が100kg/m³を超えると,フロ ー値の低下は大きくなる。このことは,粉体量 の増加とフライアッシュの特性(未燃カーボン 及び不整形粒子)の影響と考えられる2)。

これらの試験結果より,コンクリート配合設 計に用いるフライアッシュは、内割配合で60kg/ m³,外割配合で90kg/m³までとした。

図-1 フライアッシュ量とフロー値の関係

表-4 モルタルフロー測定結果

			- 11	- 2777						
	配合区分	W/C	W/(C+F)	海砂:砕砂		単位量	(kg /m ³)	AE減水剤	フロー値
		(%)	(%)	(%)	W	С	S	F	×(C+F)%	(mm)
	B0- 0	56.0	-	65:35	169	302	860	-	0.4	230 × 225
内	F1- 60	70.0	56.0	65:35	175	250	847	60	0.4	220 × 218
割	F1-45	66.0	56.5	65:35	175	265	830	45	0.4	220 × 220
IJ	F1- 30	62.5	56.5	65:35	175	280	844	30	0.4	226 × 226
	F2- 50	59.3	50.7	54:46	175	295	785	50	0.6	225 × 225
	F2-70	59.3	47.9	54:46	175	295	756	70	0.6	213 × 211
外	F2-80	59.3	46.7	54:46	175	295	743	80	0.6	209 × 209
割	F2-100	59.3	44.3	54:46	175	295	637	100	0.6	220 × 220
IJ	F2-100	59.3	44.3	54:46	175	295	719	100	0.6	207 × 207
	F2-100	59.3	44.3	54:46	175	295	790	100	0.6	195 × 192
	F2-130	59.3	41.2	54:46	175	295	603	130	0.6	198 × 195

(4) コンクリート配合設計

モルタル試験結果から仮配合を設定し,室内 試験練りでコンクリート配合を決定した。その 際,現地の護岸コンクリート構造物で使用され ているコンクリート配合(呼び強度24,スランプ 12cm)をベースとした。なお,今回の配合設計で は,高性能AE減水剤を使用していない。

各設計配合のフレッシュ性状を比較検討する ため、コンクリート凝結試験、スランプ試験、空 気量試験等をJIS規格に基づいて実施した。

(5) コンクリート試験

a) スランプと空気量の測定

室内試験練りの配合を表-5に示す。これらの 配合から得られたスランプと空気量の測定結果 等を表-6に示す。

内割配合(F1-60)の場合,単位フライアッシュ 量60kg/m³で,スランプ13cm,空気量5.0%の目標 値が得られた。このことは,使用しているフラ イアッシュの品質が良く,セメント代替として 使用可能であることを示している。

一方,外割配合では,単位フライアッシュ量50 kg/m³まではスランプ低下が認められない。し かし,80kg/m³に増加すると,細骨材率を40%に減 少させ,海砂と砕砂の混合割合を50:50,AE減水 剤を標準使用量(0.4%)の1.5倍増に配合を修正 をすることにより,目標スランプの確保が可能 となった。さらに,単位フライアッシュ量90kg/ m³に増加すると,細骨材率及び細骨材の混合割 合を修正することにより目標スランプの確保は 可能であるが,粘性が増加し,作業性が低下する ため実用化が困難であると考えられる。

これらの結果より,フライアッシュの混入量

は,内割配合で単位フライアッシュ量60kg/m³, 外割配合で80kg/m³とした。

	表-6	ヽ ランプ及び空気量の測定結果
--	-----	------------------------

配合 区分	スランプ (cm)	空気量 (%)	コンクリート 温度()
B0- 0	12.5	5.8	17.6
F1-60	13.0	5.0	17.8
F2-50	13.0	3.6	18.1
F2-70	14.0	4.5	18.5
F2-80	12.0	4.5	17.8
F2-90	13.5	4.5	17.9

b) 凝結試験

凝結試験は,最も混和剤使用量の多い外割配 合(F2-90)と,ベース配合(B0-0)で比較検討を行 った。その結果を図-2に示す。

F2-90配合は、ベース配合に比較して凝結時間 が始発、終結共に5時間程度遅延している。その 理由は、フライアッシュの使用と多量の混和剤 使用によるものと考えられるが、ここではフラ イアッシュを砂代替として用いており、セメン ト量を一定量確保している為、凝結の遅延は、後 者の混和剤多量使用による影響が大きいものと 考えられる。

配合	W/C	₩/(C+F)	s/a	海砂:砕砂	単位量(kg/m ³)				AE 減水剤	
区分	(%)	(%)	(%)	(%)	W	С	F	S	G	× (C+F)%
B0- 0	56.0	-	47.2	54:46	173	309	-	854	971	0.4
F1-60	70.0	56.5	47.8	54:46	175	250	60	851	947	0.4
F2-50	59.3	50.7	44.7	54:46	175	295	50	785	987	0.4
F2-70	59.3	47.9	40.0	50:50	175	295	70	693	1057	0.6
F2-80	59.3	46.7	40.0	50:50	175	295	80	688	1052	0.6
F2-90	59.3	45.5	38.0	30:70	175	295	90	648	1079	0.6

表-5 室内試験練り配合表

c) 圧縮強度試験

圧縮強度試験は、標準養生3,7,28,91日後に行 った。圧縮強度の発現状況を図-3に示す。

標準養生3日では、内割配合がベース配合より 4N/mm²低い値を示すのに対し,外割配合は同程 度の値を示す。養生7日においては,養生3日と 同様の傾向を示す。また,養生28日では,内割配 合がベース配合より4N/mm²低いのに対し,外割 配合(F2-90)は6N/mm²高い値を示している。そ の他の外割配合(F2-70,F2-80)は、ベース配合と ほぼ同程度の値を示す。さらに,養生91日にお いて,内割配合とベース配合がほぼ同じ値(40N/ mm²)を示すのに対し,外割配合が内割配合より も9~10N/mm²の高い値を示す。なお,外割配合 の強度が高いのは₩/(C+F)が小さいことによる。

3. 実機プラントでの配合決定

実機プラントでの配合は,室内試験練りの結 果を修正して決定し、その示方配合を表-7に示 す。この配合確認のため,実機プラントにおい て練り混ぜが行われた。練り混ぜ量は1m³とし、 スランプ及び空気量の測定の後,圧縮強度用試 験体を採取した。更に,経時変化試験を30分毎 に90分経過まで行い、スランプ及び空気量の測 定を行った。その測定結果を図-4,図-5に示す。工場採取が1年,現場採取は28日までとした。

スランプの経時変化は,内割配合とベース配 合が同様の性状を示すが、外割配合は30分経過 後に大きなスランプロスを示した。

空気量の経時変化は、ベース配合の緩やかな 減少に対し,フライアッシュ使用配合は,いずれ も30分経過後に大きな減少を示しいる。外割配 合は、その後においても減少している。

図-4 スランプ経時変化 図-5 空気量経時変化

4. 現場施工時のコンクリート試験

4.1 フレッシュコンクリートの品質検査

フライアッシュコンクリートのスランプ及び 空気量を生コン工場と荷卸し地点で測定した。 生コン工場から荷卸し地点までの所要時間は約 30分であった。

スランプ及び空気量とも,実機プラントでの 経時変化試験と同様の値を示し,30分後のロス が大きかった。このことより、使用する混和剤 の選定が今後の検討事項である。

4.2 圧縮強度試験

フライアッシュコンクリート打設は,2日に分 けて行われ,各々に対して,圧縮強度用試験体を 工場及び現場で採取した。試験体の標準養生は,

表-7 示方配合表(軍機プラント)

						///				
配合区分	W/C	₩/(C+F)	s/a	海砂:砕砂		単位	量(kg	/m ³)		AE 減水剤
	(%)	(%)	(%)	(%)	W	С	F	S	G	× (C+F)%
B0- 0P	56.0	-	47.2	65:35	169	302	-	860	979	0.4
F1-60P	70.0	56.3	47.6	65:35	172	245	60	852	955	0.4
F2-80P	59.3	46.7	40.0	50:50	175	295	80	688	1052	0.6

圧縮強度の試験結果を図-6に示す。圧縮強度 発現性は,外割配合が最も高く,内割配合,ベー ス配合の順に小さくなっている。フライアッシ ュコンクリートは,ポゾラン効果により長期材 齢で強度が増加している。材齢28日強度におけ る工場採取と現場採取の試験体では,現場採取 の方の強度が高くなっている。その原因は,空 気量のロスが影響しているものと考えられる。

4.3 長さ変化試験

長さ変化試験は、JIS A 1129のダイヤルゲー ジ法で行った。その測定結果を図-7に示す。 材齢8週までは材齢とともに収縮し,以降は収束 する傾向を示している。

現場に打設したフライアッシュコンクリート (F1-60P,F2-80P)は,最大で収縮率5×10⁻⁴を示 す。この値は,単位水量の上限設定の根拠とな った乾燥収縮率8×10⁻⁴以下³⁾を満足している。

- 5. 耐久性試験
- 5.1 試験概要

ベースコンクリート及びフライアッシュコン クリートを用いた護岸コンクリートから打設1 年半後にコア(94mm)を採取し,中性化試験,圧 縮強度試験及び全塩分量の測定を行った。コア の採取位置を図-8に示す。なお,コアNo.1,2,3 は中性化試験及び圧縮強度試験に用い,No.4,5, 6を全塩分試験に用いた。

5.2 中性化試験結果

中性化試験は,試験体側面に1%フェノールフ タレイン溶液を噴霧して測定した。各配合の試 験体とも赤紫色に着色し,中性化部分は認めら れなかった。

5.3 圧縮強度試験結果

圧縮強度試験は,中性化試験終了後の試験体 を用いて測定を行った。圧縮強度の試験結果を 表-8に示す。ベース配合(B0-0P)の平均値が32. 8N/mm²に対し,フライアッシュコンクリート内 割配合(F1-60P),外割配合(F2-80P)が各々46.3 N/mm²,51.8N/mm²を示している。

表-8 圧縮強度の試験結果 (N/mm²)

コアNo.	B0-0P	F1-60P	F2-80P
1	30.7	50.1	49.3
2	29.8	44.4	55.3
3	37.8	44.4	50.8
平均值	32.8	46.3	51.8

5.4 塩化物量分析結果

塩化物量の分析方法は,JCI SC 5に準拠し,コ ンクリート表面から深さ5cmまでを1cm間隔,5cm 以降9cmまでは2cm間隔でカットし,分析用試料 とした。図-9,図-10,図-11に塩化物イオン濃度 分布(CI-:wt%)をコア採取位置ごとに示す。

最も厳しい飛沫帯(No.4の位置)における表層 (0~1cm)での塩化物イオン濃度は,0.6~0.9% と非常に高い値を示す。ここでは外割配合(F2 -80P)が最も高い値を示している。内部(2~3 cm)において,ベース配合(B0-0P)の0.2%,内割 配合(F1-60P)の0.13%に対し,外割配合(F2-80 P)が0.03%と非常に小さい値を示す。No.5の位 置についても海水飛沫の影響が強く,表層を除 いてNo.4の位置の濃度分布とほぼ同様の値を示 している。No.6の位置における濃度は,飛沫の 影響が小さく,塩化物の浸透量が少ない。なお, 全ての部位においてフライアッシュ量の多いF2 -80P配合の遮塩性が優れている。

6. まとめ

今回の実証試験より得られた結果を列記する。

- (1) モルタル試験で得られたデータは、内割、 外割配合ともコンクリート配合設計に有効 に利用出来る。
- (2) 本実験で使用している混和剤(AE減水剤)を 標準使用量の1.5倍に増加しても,外割配合 のフライアッシュ使用量の上限は80kg/m³ である。
- (3) 外割配合(F2-90)の凝結時間は,混和剤を標準使用の1.5倍に増加すると,ベース配合に 比べ5時間程度遅延する。
- (4) 外割配合の圧縮強度は、ベース配合より高くなる傾向を示す。一方,内割配合の初期強度は、ベース配合より小さいが長期強度は増大する。
- (5) フライアッシュコンクリートの長さ変化は, 単位水量の上限設定の根拠となった乾燥収 縮率8×10⁻⁴以下を満足している。
- (6)構造物から採取したコア供試体の1年半後の圧縮強度は,内割,外割配合ともベース配合より高い値を示す。
- (7) 遮塩性は,外割配合,内割配合,ベース配合 の順に表れ,フライアッシュによる遮塩効 果が認められる。

参考文献

- Sorn Viraほか:フライアッシュを多量使 用したコンクリート中への塩化物イオン浸 透性状,コンクリート工学年次論文報告, Vol.22, No.1 pp.139-144, 2000
- 2) 畑本浩樹,平野利光:海外炭専焼発電所から発生する石炭灰を用いたコンクリートの 性状について、コンクリート工学年次論文 報告集, Vol.16,No.1, pp.413-418 1994
- 3) 日本建築学会:建築工事標準仕様書・同解 説JASS 5 鉄筋コンクリート工事 pp.215, 1997