論文 細骨材の表乾判定試験方法に関する基礎的研究

竹内 一真*1・武若 耕司*2・奥地 栄祐*3・山口 明伸*4

要旨:近年,示方書が仕様規定型より性能照査型へと移行したことにより,細骨材としてJIS 規格外の骨材も含め,より幅広い骨材が使用される可能性が出てきた。しかし,現在の細骨 材の表乾判定方法はこれら規格外骨材をその対象としていない。そこで本研究では,原理的 にどのような種類の骨材にも有効に使用できると考えられる赤外線や電気抵抗を利用した 方法などいくつかの表乾判定方法について,その精度や使用性等を比較検討した。 キーワード:低品質骨材,表乾判定,赤外線,電気抵抗,表乾判定用コーン

1. はじめに

近年,コンクリート用細骨材は,川砂の枯渇 化および示方書が仕様規定型より性能照査型へ と移行したことにより,より幅広い範囲の細骨 材の使用が検討されはじめている。特に,JIS に規定される品質の全てを満足しない,いわゆ る低品質な骨材の有効活用は今後の大きな課題 である。そしてこのような骨材の多様化に伴い, JIS における細骨材の表乾状態判定方法(JIS A 1109;細骨材の密度および吸水率試験方法)の限 界も指摘されている。

そこで本研究においては,まず,低品質骨材 の表乾状態は,従来のJISA1109に規定された 試験方法では判定が困難といわれており,その 原因が,コーン形状および試験方法であると考 えられていることから¹⁾,コーンの種類を数パ ターン用意し,コーンの形状が表乾判定に与え る影響について検討を行った。さらに,原理的 にどのような種類の細骨材においても適用が可 能であると考えられる方法として,赤外線の原 理を利用した表乾判定試験方法を新たに開発し ²⁾,最近実用化が進められている電気抵抗の測 定による表乾状態判定試験方法³⁾とともに,そ の精度や使用範囲について検討を行った。なお, 検討にあたっては,南九州に多量に存在し細骨 材として利用が検討されているシラスを用いた。

2. 使用骨材の概要

本実験では,低品質骨材の対象として鹿児島 県においてコンクリート用細骨材としての実用 化が進められているシラスを使用した。検討に は,産地の異なる3種類のシラス(シラスA, シラスB,シラスC)を使用し,比較用として 川砂を用いた。シラスおよび川砂の粗粒率,微 粒分含有量,単位容積質量を表-1に示す。表よ り,シラスが微粒分を非常に多く含み,骨材と しては低品質な材料であることが確認できる。 このような状況から,シラスに対しては,従来 までの表乾判定方法であるJISA1109の適用は 困難であると考えられた。

種類	シラスA	シラスB	シラスC	川砂
微粒分 含有量(%)	24.9	23.7	16.6	2.3
粗粒率	1.33	1.41	1.38	2.88
単位容積 質量(kg/l)	1.06	1.11	0.99	1.76

表-1 使用骨材の物性表

^{*1} 鹿児島大学大学院理工学研究科 (正会員) *2 鹿児島大学助教授 工学部海洋土木工学科 工博 (正会員) *3 鹿児島大学大学院理工学研究科 工修 (正会員) *4 鹿児島大学助手 工学部海洋土木工学科 工博 (正会員)

3. 表乾判定用コーンによる表乾判定試験

3.1 試験方法

上記 2. で示したシラスの表乾判定に細骨材 の表乾判定方法として一般的に用いられてきた JIS A 1109 の適用が困難であると考えた理由は, シラスの粒子形状の悪さおよび多量の微粒分を 含むということにある。従来のフローコーンに よる判定方法は 表乾状態となることによって, 粒子間の液体橋による付着力がなくなり,すべ りが生じることを利用したものである。ところ が,川砂とシラスの内部摩擦角を比較すると, 川砂が約 28°であるのに対して,シラスは約 38°と 10°程度大きく,すべりにくい状況にあ る。

そこで,この内部摩擦角を考慮し,コーンを 図-1に示すJISコーンの形状から図-2に示す直 立あるいは直立に近いコーンに変え,試験方法 も表-2に示す様にJISA1109から直立コーン仕 様に改良することにより,微粒分が多く,粒子 形状が角張っている骨材においても,コーンに よる表乾の判定が可能であろうと考えた。そこ でここでは,骨材の自立角が90°となる3種類 のフローコーンならびに,コーンを引抜きやす くするために,骨材自立角を90°よりも若干小 さくした84コーンおよび88コーンを作製した. 以上,5種類のコーンについて,その測定精度 や使用性を比較検討し,コーン形状が表乾判定 に与える影響を検討するとともに,表乾判定用 コーンとして最も適していると考えられるコー ン形状の選定を行った。

なお,比較用試験方法として,フローコーン による判定が困難な場合の代替試験方法として ASTMに規定されている仮表面テストを用いた。 その試験概要を表-3に示す。

3.2 表乾判定用コーンによる表乾判定結果 図-3に,各コーンを用いた表乾判定試験で得 られたシラスの吸水率を示す。なお,試験はそ れぞれについて3回行い,試験結果の再現性を 検討した。なお,ここで検討に用いたシラスは B および C 種である。この結果,コーンの直径 を変えた直立コーン1と3を用いた試験結果で は,コーンの直径が表乾判定結果に及ぼす影響

表-2 表乾判定用コーンによる

表乾判定試験方法			
試験方法		JIS A 1109	直立コーン仕様
(⊈田 コーン		図-2に示す	図-2に示す
(史田 器具 突き棒		質量(340±15g,一端が直径25±	
		3mm)	
試料充てん 方法		コーンに緩く 詰め , 上面を 均す	コーンに緩〈詰める (ただし,突き固め 後に試料の再充て んを行わないでよい 程度の余盛りを行 う)
突き固	め方法	突き棒の自重のみで25回突く	
表乾判定 試料が最初にスランプしたとき		スランプしたとき	

図-2 形状を変化させた表乾判定用コーン概要

はほとんど見られず,コーンの高さを変えた直 立コーン2と3の試験結果からは,コーンの高 さを高くすると吸水率が大きく判定されるとい う結果が得られた。また,骨材の自立角が表乾 判定に及ぼす影響については,自立角が90°に 近づくほど,判定される吸水率の値が大きくな るという結果となった。

次に,判定された吸水率の値を JIS 法あるい は仮表面テストと比較してみると,JIS 法によ る結果は,他のいずれの方法よりも明らかに小 さな値を示した。また,仮表面テストで判定さ れた吸水率は,シラス B においては直立コーン 1 および 2 が比較的近い値となっていた。しか し,シラス C においては直立コーン 2 で判定さ れた吸水率は,仮表面テストに比べ非常に大き な値となり,結果的には直立コーン 1 の結果と 仮表面テストの結果が最も近いと判断された。

また,それぞれの表乾判定用コーンについて

により判定でいた吸小平				
〔 重米百	川砂	シラスB	シラスC	
小王大只	吸水率(%)			
コーン	2.05 1	7.53 ²	4.13 ²	
ASTM仮表面テスト	2.25	9.62	4.39	

¹ JIS A 1109 による判定結果

2 直立コーン1による判定結果

行った,3回の表乾判定試験の結果には大きな ばらつきは認められず,いずれのコーン形状で あっても十分な再現性を有することが確認され た。以上のことから,シラスのような粒形が悪 く,微粒分を多く含むような低品質骨材に対し ては,内部摩擦角等の影響を考慮し,従来のコ ーンより自立角や寸法を変えることにより適切 な表乾判定が可能になると考えられた。

表-4 に今回のコーンを用いた表乾判定試験 結果より,試料の吸水率として適切と考えられ る値を仮表面テストの試験結果と比較して示し た。

4. 赤外線による表乾判定試験

4.1 試験方法

赤外線による表乾判定試験方法に使用した赤 外線装置の仕様を表-5 に示す。表における測定 方式の 2 波長とは,水に吸収されやすい波長 (1.46 µ m)とされにくい波長(1.6 µ m)を意味 する。

表-5 赤外線装置の仕様

測定方式	赤外線反射形2波長方式		
測定距離	50mm		
使用温度範囲	0 ~ 50		

試験概要を図-4 に 示す。図における実線 の赤外線は,照射され た赤外線,破線は,試 料にぶつかり反射され た赤外線を示す。また, 太線の赤外線は,水に

吸収されにくい赤外線を示し,細線は水に吸収 されやすい赤外線を示す。

試験は,骨材試料を乾燥させながら適時,その一部をコーンに1層25回で突き詰め,試料上面 50mmの距離から2種類の赤外線を同量,同時に照射し,それぞれの赤外線の反射量を測定し, 式(1)により,2つの赤外線の反射量比を算出 する。その後,コーンに詰めた試料は炉に入れ て絶乾にさせ,式(2)によりその試料の含水率 Z_i(%)を算出する。

Z_i = {(m - m_d) / m_d} × 100 ...(2) ここで,Z_i;含水率(%)

m;試験試料質量(g)

 m_d ;試験試料絶乾質量(g)

残った試料はさらに乾燥させながら,上記の 試験を繰り返し,含水率 Z_i(%)と赤外線反射量 比 I_d(V)の関係を図にプロットし,その関係の 変化の状況から表乾状態を判定するものである。

4.2 赤外線による表乾判定試験結果

本検討においては,再現性の確認を行うため, 同一の試料において赤外線による表乾判定試験 を2回行った。図-5に,それぞれの試料におけ る含水率と赤外線反射量比の関係を示す。

この結果,川砂およびシラスCの場合には両 者の関係は,赤外線反射量比に最小値を有する, 下に凸の関係を示した。一方,シラスAおよび Bにおいては,高含水率で右肩上がり,低含水 率ではほぼ一定となる結果となった。

本試験方法の原理では,高含水率においては 水に吸収されやすい波長の赤外線が骨材表面に 付着している水に吸収されるため,含水率が高 くなると式(1)で算出される赤外線反射量比は 大きくなる。しかし,表乾状態よりも乾燥する と骨材表面に水がないため,水に吸収されやす い波長の赤外線は水に吸収されなくなり,赤外 線反射量比は一定になると考えられる。

図-5 の結果より,シラス A および B の結果 は、この赤外線の原理と一致するものであった。 したがって,赤外線反射量比が一定となる点, すなわち図中の高含水率および低含水率それぞ れの範囲における近似直線の交点が表乾状態と 判定できる。一方,川砂およびシラス C におい

図-6 骨材の含水率による色の変化

ては,低含水率において左肩上がりとなり,か えって含水率の低下に伴って赤外線反射量比が 増加する傾向にあった。この原因については, 表乾状態以降の乾燥過程における骨材の色の変 化の影響が考えられた。図-6 に,川砂およびシ ラスAの含水状態の変化に伴う色の変化を比較 して示す。

図より,シラス A においては,含水状態の 変化に伴う骨材の色の変化はそれほど大きくな いが,川砂においては骨材の色が黒色から灰色 へと大きく変化した。したがって,黒色に吸収 されていた水に吸収されにくい赤外線の一部が, 灰色には吸収されず,結果として赤外線反射量 比を高めた可能性がある。ただし,この状況に おいても,前述の場合と同様に,高含水率およ び低含水率それぞれの領域の含水率と赤外線反 射量比の関係を直線近似し,その交点を表乾状 態と判定することには,支障はないものと思わ れる。

以上のことから,高含水率および低含水率に おける近似直線の交点を表乾状態として算出し た吸水率を表-6 に示す。

表-6 赤外線による表乾判定結果

1壬 半五	吸水率(%)			
	1回目	2回目	平均	
川砂	2.10	2.14	2.12	
シラスA	4.90	4.89	4.90	
シラスB	4.14	4.12	4.13	
シラスC	3.27	3.29	3.28	

なお,本測定方法ではいずれの試料において も吸水率試験の条件である2回の測定結果の差 が 0.05%以内でなければならないという条件を 満足していた。

5. 電気抵抗法による表乾判定試験

5.1 試験方法

電気抵抗法による表乾判定試験は,既往の研 究結果に基づいて実施した³⁾。

試験概要を図-7に示す。

試験にあたっては,まず,吸水率判定用の試 料を用意し,これを上記の赤外線による試験と 同様に徐々に乾燥させながら適時,電気抵抗の 測定を行った。

電気抵抗の測 定にあたっては, 300gの試料を 測定容器に3層 15回で突き詰 め,銅板電極を 介して,アナロ グテスターによ

り試料の電気抵抗を測定した。なお,容器に詰める際,あらかじめ試料に電解質として NaCl を 5g添加し,1分撹拌,3分静置した状態の試料を再度撹拌して用いた。

5.2 電気抵抗法による表乾判定試験結果

図-8 に試料の電気抵抗の対数値と含水率(式 (2)により算出)の関係の一例を示す。なお, 図中の×マークは,試料の含水率が低下しすぎ たことにより電気抵抗が測定できなくなったこ とを示す。

川砂においては,図-8の上図に示すように高 含水率と低含水率,それぞれの領域で電気抵抗 と含水率の関係に明確な差が見られた。このた め,それぞれの領域における両者の関係を直線

近似し、その交点を表乾状態と判定した。なお, シラスCにおいても川砂と同様の傾向が見られ た。一方,シラスAにおいては,図-8の下図に 示すように川砂に比べて低含水率における電気 抵抗値が低いため、縦軸を対数メモリでとると, 高含水率と低含水率における差が多少見分けに くくなったが,このことが吸水率の判定に影響 を及ぼすほどではなかったため,同様に表乾状 態の判定を行った。なお,シラスBにおいても シラスAと同様の傾向が見られた。

表-7 に電気抵抗法によって得られた各試料 の吸水率をとりまとめて示す。表乾判定を電気 抵抗法で行った場合の吸水率の値は,シラスに ついては,赤外線によって得られた吸水率とほ ぼ等しくなったが,川砂においては,JISA1109 によって判定された方法や赤外線を用いた方法 よりも0.5%程度大きな値となった。

表-7 電気抵抗法により得られた吸水率

試料	川砂	シラスA	シラスB	シラスC
吸水率(%)	2.53	5.03	4.19	3.12

6. まとめ

低品質骨材等においても表乾判定が可能な, JIS A 1109 に替わる新たな表乾判定試験方法に ついて検討を行った。今回検討を行ったそれぞ れの試験方法による表乾判定結果をもとに得ら れた各試料の吸水率を図-9に示す。この結果か らも明らかなように,川砂においては,仮表面 テストも含め赤外線法および電気抵抗法とも JIS A 1109 とほぼ同程度の結果が得られること が確認された。一方,低品質骨材の例として検 討対象としたシラスにおいては,仮表面テスト および直立コーンによって判定された表乾と、 赤外線および電気抵抗法によって判定された表 乾状態とが異なる結果が得られた。これについ ては,次のように考えられる。すなわち,シラ スのようなポーラスな骨材の場合,粒子表面に 開口を持つ空隙が存在するが,赤外線法あるい は電気抵抗法では,これらの空隙中の水につい ても表面水と判定するものと考えられる。これ に対して,コーン法あるいは仮表面テスト法で は,この空隙水を表面水とは判定しないために, このような差が生じたのではないかと思われる。

ただし,同時に行った目視観察の結果では, 赤外線法および電気抵抗法によって判定された 表乾状態は,やや乾きすぎの状態であるとみら れる状況も確認しており,いずれの状態を表乾 状態として定義するかについては,さらに検討 が必要である。

参考文献

- 1)竹内一真ほか:高吸水率で微粒分を多く含む 低品質骨材の表乾状態判定方法に関する基礎 的研究,土木学会第57回年次学術講演会概要 集, V-426, pp851-852, 2002.9
- 2)竹内一真ほか:しらすの細骨材としての特性 とその評価に関する基礎的検討,土木学会第 56 回年次学術講演会概要集, V-172, pp344-345,2001.10
- 3)上野敦ほか:細骨材の表乾燥状態判定方法に 関する基礎的検討,コンクリート工学年次論 文報告集, Vol.18, 1, pp.423-428,1996.6

