論文 ハイブリッド型短繊維を混入したコンクリートの破壊特性

松沢 晃一*1·橘高 義典*2·田村 雅紀*3

要旨:コンクリートに混入する繊維には,強度増加型のものと,高エネルギー吸収型の2種がある。本研究はこれらを組合せ,ハイブリッド型短繊維としてマトリックスに混入し,楔割裂試験により破壊特性を評価した。2種の繊維として代表的な炭素及びビニロンを選定し,混合比を変化させた。高エネルギー吸収型のビニロン繊維は,形状(長さ・径)の違いにより破壊特性が異なることから,形状を変化させた。その結果,強度増加型と高エネルギー吸収型の繊維の混合比を変えることで,ハイブリッド型短繊維補強コンクリートの破壊靭性を制御できることが考案された。 キーワード:ハイブリッド型短繊維,破壊特性,最大強度,高エネルギー吸収

1. はじめに

短繊維補強コンクリートについては,近年多 くの研究開発がなされており,繊維の種類も多 様化している。繊維の特性は用途によって様々 であるが,破壊力学の観点からは,初期のひび 割れ進展に対する抵抗値が大きく最大強度を向 上させる効果の大きい繊維と,破壊進展に伴い 大きなエネルギー吸収能を示す靭性向上に効果 が大きい繊維があり,高エネルギー吸収型の繊 維では,繊維の形状(長さ・径)の違いにより エネルギー吸収能に差が生じることなども報告 されている¹⁾。前者に代表されるのはガラス・ 炭素繊維であり,後者にはビニロン・ポリプロ ピレン繊維等が挙げられるが,これらの繊維を ハイブリッド型短繊維としてマトリックスに混 入することにより,力学的に相乗的な効果が期 待できるコンクリートが可能と考えられる。

本研究は,最大強度向上型の炭素繊維と,高 エネルギー吸収型のビニロン繊維を混合比を変 化させたハイブリッド型短繊維としてマトリッ クスに混入し,破壊特性の評価を行った。また, ビニロン繊維については,形状の異なったもの を用意し,同一繊維でのハイブリッド型短繊維 混入試験体を作成し,同様の評価を行った。

2. 研究概要

2.1 使用材料及び計画調合

表-1に使用材料を示す。セメントは普通ポ ルトランドセメント,細骨材は硬質砂岩砕砂(多 摩産),混和剤はポリカルボン酸エーテル系の高 性能 AE 減水剤を使用した。

材料	種類	記号	物性
セメント	普通ポルトランドセメント	С	比重 3.16
細骨材	硬質砂岩砕砂 (多摩産)	S	絶乾比重 2.58 吸水率 1.71% 最大径 5mm
繊維	炭素繊維	C-F	比重 1.62
	ビニロン繊維	V-F	比重 1.30
混和剤	高性能 AE 減水剤	SP	ポリカルボン酸エーテル系 比重 1.0

表—1 使用材料

*1 東京都立大学大学院 工学研究科建築学専攻 大学院生(正会員)

*2 東京都立大学大学院 工学研究科建築学専攻 教授・工博(正会員)

*3 東京都立大学大学院 工学研究科建築学専攻 助手・博士(工学)(正会員)

-305-

表-2に使用繊維の物性を示す。繊維は炭素 繊維,ビニロン繊維の2種類を使用した。ビニ ロン繊維については、繊維形状が破壊特性に与 える影響を考慮するために、長さ・径の異なる 3形状のものを使用した。

表-3に基本調合を示す。水セメント比は 30%,60%の2水準とし、水セメント比30%に は高性能 AE 減水剤を使用した。

表-4に試験体種類を示す。繊維混入量は容 積比で1%一定とし、ハイブリッド型短繊維の 混入は、短い繊維(C, V)と長い繊維(V₁, V₂)組合せにより4水準とした。混合割合は、 短:長=1:3,2:2,3:1とした。

混練には7リッターー軸強制練りミキサーを 使用した。セメント,細骨材を投入し空練りを 60秒間,水及び混和剤を加えて90秒間混練し, その後,ミキサーを回転させたまま繊維を少し ずつ投入し,5分間混練した。打設後1日で脱 型し,4週の標準水中養生(20℃)とした。

2.2 強度試験

強度試験は 40×40×160mm の試験体を作成 し, 圧縮試験及び曲げ試験を行った。

2.3 楔割裂試験

破壊特性試験は、モード I 型(引張型)の破壊が小試験体で得られる楔割裂試験(図-1)によった。試験体寸法は 100×100×120mm とし、試験体中央にダイヤモンドカッター(刃厚1mm)により 50mm まで切欠きを入れた。

表―2 使用繊維の物性

種類	記	繊維長	繊維径	引張強度	ヤング率
	万	(mm)	(μm)	(MPa)	(GPa)
炭素	C-f	10	17	1800	176
ビニロン	V-f	12	660	900	29
	V_1 -f	30	200	900	29
	V_2 -f	30	660	900	29

表—3 基本調合

W/C	質量(kg/m ³)					
(%)	W	W C		SP		
30	222	792	1313	C×2%		
60	383	639	1060	0		

表—4 試験体種類

記号	W/C		%)		
	(%)	C-f	V-f	V ₁ -f	V ₂ -f
H-NON		_	_	_	
H-C		1	_	_	
H-V			1		
$H-V_1$				1	_
H-V ₂					1
H-CV ₁ 13		0.25		0.75	
H-CV ₁ 22		0.50		0.50	_
H-CV ₁ 31		0.75		0.25	_
H-CV ₂ 13	30	0.25			0.75
$H-CV_222$		0.50	_	_	0.50
H-CV ₂ 31		0.75			0.25
$H-VV_113$			0.25	0.75	_
$H-VV_122$			0.50	0.50	_
H-VV ₁ 31			0.75	0.25	_
H-VV ₂ 13		_	0.25	_	0.75
H-VV ₂ 22		_	0.50	_	0.50
H-VV ₂ 31			0.75		0.25
N-NON					_
N-C		1		_	_
N-V			1		_
N-V ₁				1	_
N-V ₂					1
N-CV ₁ 13		0.25		0.75	_
N-CV ₁ 22		0.50		0.50	_
N-CV ₁ 31		0.75		0.25	_
N-CV ₂ 13	60	0.25			0.75
N-CV ₂ 22		0.50	_	_	0.50
N-CV ₂ 31		0.75	_	_	0.25
N-VV ₁ 13		_	0.25	0.75	_
$N-VV_122$			0.50	0.50	
N-VV ₁ 31			0.75	0.25	—
N-VV ₂ 13			0.25		0.75
N-VV ₂ 22		—	0.50	—	0.50
N-VV ₂ 31			0.75		0.25

破壊に要するエネルギー変化を精度よく把握 するため,図-2に示すように,加力部,制御 装置,油圧装置などからなるクローズドループ システム(閉回路機構)を有するサーボ・コン トロール式油圧試験機(MTS 社製)を使用した。 また,試験体の安定破壊が得られるように,切 欠き端部の開口変位の変位速度を繊維無混入試 験体では 0.02mm/min,繊維混入試験体では 0.04mm/min に設定した。開口変位の計測には変 位制御用の高感度クリップゲージを使用した。

2.4 破壊特性の評価

楔割裂試験より得られる荷重―開口変位曲線 を基に、多直線近似法²⁾により引張軟化曲線(結 合力モデルにより破壊進展をモデル化した場合 での結合力とひび割れ開口変位との関係)を求 めた。まず、結合力モデルと引張軟化構成則を 用いた楔割裂試験による荷重―開口変位曲線の 解析プログラムを作成し、実験結果を逆解析す ることで、多直線型の引張軟化曲線を逐次最適 化し求めた。材料の本質的な引張強度評価値と なる引張軟化曲線の初期結合応力は、ひび割れ の進展に対し一時的に軟化勾配を 0 と仮定し (完全塑性型)、ひび割れ進展解析結果と実際の 荷重―開口変位曲線とが一致するように求めた。

3. 試験結果及び考察

3.1 フレッシュ性状及び強度試験結果

表-5に各試験体のフレッシュ性状及び硬化 後の強度試験結果を示す。炭素繊維混入した試 験体は,混入割合の増加に伴いワーカビリティ ーが低下した。また,各試験体とも分離は生じ なかった。

強度試験は、繊維無混入試験体に比べ、繊維 混入試験体で曲げ強度が上昇した。しかし、ハ イブリッドの比率と曲げ強度との間に明確な傾 向は見られなかった。

計旦	比重	フロー値*	圧縮強度	曲げ強度
記万		(mm)	(MPa)	(MPa)
H-NON	2.38	—	96.7	4.7
H-C	2.08	237×245	74.8	5.7
H-V	2.28	—	78.4	5.0
$H-V_1$	2.32	188×200	91.3	5.4
$H-V_2$	2.32	_	108.5	7.0
H-CV ₁ 13	2.38	275×276	105.5	5.2
H-CV ₁ 22	2.22	273×278	82.1	4.6
H-CV ₁ 31	2.14	252×263	79.0	4.5
H-CV ₂ 13	2.23	—	97.5	5.3
H-CV ₂ 22	2.20	—	79.9	5.2
H-CV ₂ 31	2.22	290×290	83.4	5.1
H-VV ₁ 13	2.34	—	104.6	5.3
H-VV ₁ 22	2.40	—	108.7	5.6
H-VV ₁ 31	2.38	—	103.8	5.3
H-VV ₂ 13	2.38	—	108.7	6.1
H-VV ₂ 22	2.37	—	109.2	5.0
H-VV ₂ 31	2.31	_	102.9	5.6
N-NON	2.09	—	40.5	4.8
N-C	2.02	117×118	39.1	5.8
N-V	2.09	_	45.1	4.4
$N-V_1$	2.16	_	46.8	4.1
N-V ₂	2.13	_	51.1	5.4
N-CV ₁ 13	2.17	156×165	46.2	5.2
N-CV ₁ 22	2.14	137×137	47.7	5.3
N-CV ₁ 31	2.05	126×128	39.0	5.3
N-CV ₂ 13	2.19	159×173	49.1	4.8
N-CV ₂ 22	2.14	136×139	47.7	5.2
N-CV ₂ 31	2.10	118×123	41.0	5.0
N-VV ₁ 13	2.19	—	50.5	4.7
N-VV ₁ 22	2.05	_	49.1	4.2
N-VV ₁ 31	2.13		50.5	5.1
N-VV ₂ 13	2.17		44.7	5.4
N-VV ₂ 22	2.13		50.6	4.6
N-VV ₂ 31	2.08		45.9	4.3

表--5 試験体の基礎的性状

*-は300mm以上

3.2 荷重—開口変位曲線

のと考えられる。

図-3に荷重一開口変位曲線を示す。最上図 に示す単一繊維混入では、水セメント比 30% (H)の方が 60% (N)よりも最大強度が大き くなる結果となった。また、60%で、炭素繊維 混入試験体の最大強度が最も高くなる結果とな った。靭性能に関しては、水セメント比に関係 なくビニロン繊維混入試験体が高くなる結果と なった。これは、それぞれの繊維特性によるも

ビニロン繊維の単一混入で、同じ径の繊維を 混入した V (660 μ m, 12mm) と V₂ (660 μ m, 30mm) を比較すると、V₂の方が高い靭性能を 示している。繊維長の差以外の他の条件が同一 であることから,繊維とマトリックスの付着面 積が影響していると考えられる。また、ビニロ ンのような柔らかいポリマー繊維は、ひび割れ 進展時の繊維の抜け出し量が大きくなるにつれ て,見かけ上の摩擦付着強度が大きくなる現象 🤶 が報告されている³⁾ことから,抜け出し量の違 いによる摩擦付着の影響もあるものと考えられ 框 る。同じ長さの繊維を混入した V₁ (200 μ m, 30mm) と V₂ (660 µ m, 30mm) を比較すると, V₁の方が高い靭性能を示している。本研究では, 繊維混入率を1%一定としているため、太径繊 維(V₂-f)に比べ細径繊維(V₁-f)の方が混入さ れる繊維の本数が多くなる。繊維がより均一に 分散され、また、ひび割れ発生面で架橋する繊 維の本数が多くなるためと推測される。

ハイブリッド型短繊維補強コンクリートにつ いて比較すると、炭素・ビニロンのハイブリッ ド型試験体(C-V₁, C-V₂)では、ビニロン繊維 の混入割合が大きくなるにつれて靭性能が増加 する傾向を示している。混入割合の増加に伴い ビニロン繊維の特性がより顕著に現れた結果で あると考えられる。しかし、炭素繊維の混入割 合の増加に伴う最大強度の変化はあまり見られ なかった。本研究のハイブリッド型短繊維の混 入率は、1%一定となっているため、その中に混 合される繊維は、0.25%、0.5%、0.75%となる。

このような繊維混入率では炭素繊維が強度増加 に及ぼす影響が現れにくかったと推測される。 今後,混入率をより多くした試験体について実 験を行うことが必要だと考えられる。

ビニロン同士のハイブリッド型試験体 (V-V₁, V-V₂) は、炭素・ビニロンのハイブリッド型と 同様に、繊維長の長い繊維 (V₁, V₂)の混合割 合の増加に伴い靭性能が増加する傾向があった。

3.3 引張軟化曲線及び破壊パラメータ

楔割裂試験から得られた荷重一開口変位曲線 より,多直線近似解法によって求めた引張軟化 曲線を図—4に示す。また,表—6に引張軟化 曲線の解析により得られた各種破壊力学パラメ ータを示す。なお,繊維補強コンクリートでは 繊維のブリッジング作用などによりコンクリー トが完全な破断に至らず,限界開口変位 δ_{cr} が 特定できない場合もあり,破壊エネルギー G_{F}^{TSD} の評価が難しい。そこで有効ひび割れ幅 δ_{u} (= 0.5mm)を設定し、 δ_{u} まで引張軟化曲線で囲ま れる面積を有効破壊エネルギー(G_{F}^{u})とした。

図-4の引張軟化曲線を見ると,繊維無混入 試験体(NON)は,開口変位の減少に伴い結合 応力が減少していき,開口変位が0.1mmに到達 する前に破壊している。繊維混入試験体は 0.1mmに到達しても結合応力が維持され,減少 も繊維無混入試験体に比べ緩やかとなっている。 特に,ビニロン繊維を混入した試験体(V,V₁, V₂)は初期の段階で一時的に結合応力が低下す るが,開口変位の増大に伴い結合応力がやや大 きくなる傾向が現れている。

ハイブリッド型短繊維を混入した試験体は, 長い繊維 (V_1 -f, V_2 -f) の混入割合が大きいもの が,結合応力の維持効果がやや高くなる傾向を 示した。長い繊維混入により架橋作用が顕著と なったためと推測される。

炭素・ビニロン (C-V₁, C-V₂) とビニロン同 士 (V-V₁, V-V₂)のハイブリッド型試験体を比 較すると,若干ではあるが,ビニロン同士の試 験体が結合応力を維持する傾向がある。炭素繊 維とビニロン繊維の特性の違いだと思われる。

記号	ヤング 係数	有効破壊	初期 結合	タフネス 指数	有効 引張
	UN 30		応力		強度
	E (CPa)	G_{F}^{u}	σ_0	T.M. (Nm)	ft _{eff}
II NON	(GPa)	(1\/11)	(MPa)	(101)	(MPa)
H-NON	21.9	93.2	9.5	491 542	5.8
H-C	26.2	200.1	6.9	543	4.6
H-V	18.1	299.1	1.1	88/	3.3
$\frac{H-V_1}{H-V_1}$	12.2	837.4	6.6	1553	4.8
H-V ₂	25.8	326.1	8.9		
H-CV ₁ 13	18.7	480.8	11.2	1170	7.8
H-CV ₁ 22	13.4	323.8	7.2	824	5.1
H-CV ₁ 31	11.8	225.8	8.5	794	6.9
H-CV ₂ 13	23.1	330.3	5.3		3.5
H-CV ₂ 22	20.0	205.8	7.1	687	4.6
H-CV ₂ 31	22.8	194.6	8.5	678	4.9
H-VV ₁ 13	22.3	588.2	10.0	1288	6.7
H-VV ₁ 22	24.0	623.8	10.4	1417	6.6
H-VV ₁ 31	29.2	437.4	7.4	1035	4.6
H-VV ₂ 13	23.6	369.3	10.1	858	6.5
H-VV ₂ 22	27.4	472.3	7.1	1196	4.8
H-VV ₂ 31	19.6	_		_	—
N-NON	20.4	55.0	4.6	291	2.8
N-C	15.0	309.8	6.6	1038	4.9
N-V	19.0	205.3	5.0	541	2.8
$N-V_1$	11.1	775.1	6.7	1327	4.7
N-V ₂	14.4	435.3	5.0	908	3.4
N-CV ₁ 13	7.0	577.9	6.8	1153	6.0
N-CV ₁ 22	10.4	—		—	
N-CV ₁ 31	4.6	319.8	7.2	979	7.1
N-CV ₂ 13	18.5	346.3	5.7	875	3.9
N-CV ₂ 22	19.4	395.7	5.8		4.08
N-CV ₂ 31	16.4	314.2	6.2	1135	4.5
N-VV ₁ 13	7.7	729.2	5.9	1348	4.9
$N-VV_122$	11.0	483.1	5.6	986	4.0
N-VV ₁ 31	5.4	368.9	6.5	874	6.1
N-VV ₂ 13	8.3	265.5	4.9	635	3.6
$N-VV_222$	16.8	235.3	4.9	613	3.3
N-VV ₂ 31	14.7	243.1	4.9	624	3.2

表—6 破壊力学パラメータ

4. まとめ

炭素・ビニロン繊維,及び形状の異なるビニ ロン繊維同士をハイブリッド型短繊維としてマ トリックスに混入したハイブリッド型短繊維補 強コンクリートについて楔割裂試験を行い,荷 重一開口変位曲線を求め,引張軟化曲線の逆解 析結果から,繊維種類・形状の異なる繊維の混 合割合が破壊特性に与える影響を検討した。そ の結果,本研究範囲内で以下のことが明らかと なった。

- (1) ビニロン繊維は、長さ及び径を変化させた ものを混入しても、最大強度に大きな変化 は見られない。長さ 30mm のものを混入 したものに関しては、太径(660µm)の ものよりも、細径(200µm)の方が高い 靭性能を示した。
- (2) 炭素・ビニロンのハイブリッド型短繊維補 強コンクリートは、ビニロン繊維の混合割 合が大きくなるに伴い、靭性能が向上する 結果となった。炭素繊維混入に関しては、 混入率(0.25%, 0.5%, 0.75%)の低さの ためか、その最大強度の向上に及ぼす影響 は顕著ではなかった。
- (3) ビニロン同士で形状を変化させたものを 混入したハイブリッド型短繊維補強コン クリートでは、繊維が長いほど(30mm) 靭性能が向上する結果となった。

謝辞

本研究を実施するにあたり試料提供にご協力いただきました㈱クラレに感謝いたします。

参考文献

- 橘高義典,大岡督尚:高強度モルタルマト リックスの破壊パラメータに及ぼす短繊 維の影響,日本建築学会構造系論文集, No.469, pp.17-24, 1995.3
- 福高義典:引張軟化曲線の多直線近似解析 によるコンクリートの弾塑性破壊パラメ ータの評価,日本建築学会構造系論文集, No469, pp.17-24, 1995.3
- Li,V.C. and Chan,Y.W. : Determination of Interfacial Debonding Mode for Fiber-Reinforced Cementitious Composites, Journal of Engineering Mechanics, ASCE, Vol.10, No.4, pp.707-719, 1995