論文 混和材がデサリネーションによる脱塩効果に与える影響

長尾 賢二*1・上田 隆雄*2・芦田 公伸*3・宮川 豊章*4

要旨:本研究は,塩害単独,または,塩害と中性化の複合劣化を想定した混和材を含む鉄筋 コンクリート供試体を用いて,デサリネーションを適用した場合の脱塩効果を評価すること を目的とした。この結果,混和材を用いた供試体では,コンクリートの中性化に伴う内在塩 分の濃縮現象から,塩害と中性化の複合劣化状況下において,厳しい鉄筋腐食環境が形成さ れる可能性が示されたが,デサリネーションを適用した場合には,遊離塩分の除去効果から 脱塩効果が大きくなった。

キーワード:電気化学的補修工法,デサリネーション,混和材,複合劣化,腐食減量

1. はじめに

近年, コンクリート構造物の早期劣化問題を 背景に,耐久性の回復・向上を目的とした効果 的な補修工法に関する検討が積極的に進められ ている。そうした状況の中, 塩害により劣化し たコンクリート構造物の補修工法として, 電気 化学的脱塩工法であるデサリネーションが注目 され,実構造物への適用実績も増加しつつある。 これに対して, フライアッシュや高炉スラグ微 粉末を用いたコンクリートにデサリネーション を適用した場合には、コンクリート中の塩化物 イオン(以下 Cl⁻)の挙動が混和材の影響によ り変化することが考えられるが、この点に関す る検討は十分と言えない。また、山陽新幹線高 架橋に見られたような塩害と中性化の複合劣化 に対して, デサリネーションを適用した場合の 効果も不明な点が多い。

そこで、本研究では、フライアッシュまたは 高炉スラグ微粉末を混和した内在塩分を含む供 試体を作製し、塩害単独による劣化、または、 塩害と中性化の複合劣化を想定した劣化促進を 行った後に、これらの供試体にデサリネーショ ンを適用した場合の脱塩効果を評価した。評価 方法としては、供試体中の鉄筋腐食・防食状況 を自然電位法および鉄筋腐食減量の測定により 評価するとともに,脱塩後の CI濃度分布の測定 により,脱塩効果を評価した。

2. 実験概要

2.1 供試体の作製

本実験で用いる供試体として、中央部分に異 形鉄筋(D19 SD295A)を一本配した150×150 ×180mmの角柱供試体を作製した(図-1参 照)。供試体に用いたコンクリートの示方配合を 表-1に示す。水結合材比(W/B)は、比較的 厳しい鉄筋腐食環境を想定して60%を選定し、 すべての配合で一定とした。混和材置換率はフ ライアッシュで20%(FA20)、高炉スラグ微粉 末で50%(BFS50)とし、それぞれ単位結合材 量(C+FAまたはC+BFS)を一定とした上で、 セメントに対して質量置換した。また、初期CI⁻ 量は、山陽新幹線高架橋の耐久性調査結果¹⁾を 参考として、すべての配合で2.0kg/m³となるよ う、練混ぜ時にNaClの形で混入した。

養生・劣化促進条件としては、塩害のみが影響する場合を想定した封緘養生5か月と塩害と 中性化の複合劣化を想定した封緘養生2か月+ 促進中性化3か月(温度30℃,相対湿度60%,

*1 徳島大学大学院 工学研究科建設工学専攻 (正会員)
*2 徳島大学助教授 工学部建設工学科 工博 (正会員)
*3 電気化学工業㈱ 特殊混和材部 工博 (正会員)
*4 京都大学大学院教授 工学研究科土木工学専攻 工博 (正会員)

配合	Cl ⁻	W/B	s/a	Gmax	単位量(kg/m ³)						
	(kg/m^3)	(%)	(%)	(mm)	W	C	S	G	FA	BFS	減水剤
NPC						276			-	-	
FA20	2.0	60	46	20	167	221	845	998	55	-	0.7
BFS50						138			-	138	

図-1 供試体の概観

図-2 通電処理の概要

CO2濃度10%)の2種類を設定した。なお、すべての供試体について、封緘養生終了時に暴露面1面を除く残りの5面すべてにエポキシ樹脂の塗布を行った。

2.2 中性化深さの測定

促進中性化開始後 1.5 か月および 3 か月経過 した時点で,各配合に対して1体ずつの供試体 を用い,コンクリートの中性化深さを測定した。 測定方法としては供試体を切断した後,切断面 にフェノールフタレイン 1%エタノール溶液を 噴霧し,赤色に変わらない部分の深さをノギス で測定した。測定位置としては、2.5cm 間隔で 5 か所を測定し、これらの値の平均値を中性化深 さとした。

2.3 通電方法

所定の養生・劣化促進が終了した供試体に対 してデサリネーションを適用した。通電方法は 8週間連続通電とし,通電面は,エポキシ樹脂 の塗布を行っていない暴露面1面とした。また, 電流密度は通電面に対して 0.0 (無通電), 1.0, 2.0A/m²の3種類を設定した。通電に際しては, 電解溶液である 0.1N Li₃BO₃水溶液の入ったポ リ容器の中に供試体を静置し,供試体の周囲に 外部電極としてチタンメッシュを設置した後, この外部電極を陽極,供試体中の鉄筋を陰極と して,電源装置に接続し,所定の定電流を供給 した(図-2参照)。

2.4 Cl⁻濃度分布の測定

5 か月間の養生・促進中性化期間が終了した 時点で,通電処理前のコンクリート中における CI-濃度分布を測定した。測定に際して,供試体 の暴露表面から深さ方向に厚さ15mmで切り出 したプレート7枚を全量粉砕し,0.15mmのふ るいを全通させたものを,さらに100℃の乾燥 器で約3時間乾燥させて,分析試料とした。CI-濃度の分析は,JCI-SC4 に準拠し,全塩分量お よび可溶性塩分量を測定した。また,通電処理 終了時においても,同様の方法により CI-濃度 分布の測定を行い,通電処理前後の CI-濃度を もとに、通電処理前のコンクリート中の総 CI-量に対する通電処理により除去された CI-量の 比率で示される脱塩率を算出した。

2.5 鉄筋の自然電位測定

通電処理が終了した時点で,供試体を1週間 周期の乾湿繰返し環境(温度 20℃,相対湿度 95%と60%の繰返し)に静置し,定期的に供試 体中の自然電位をJSCE-E601-2000「コンクリー ト構造物における自然電位測定方法」にしたが

って測定した。照合電極には飽和銀塩化銀電極 (Ag/AgCl)を用いた。なお,無通電供試体は, 他の供試体の通電処理が終了するまでの間, 20℃の湿空環境に静置し,通電処理終了ととも に乾湿繰返し環境に移して自然電位の経時変化 を測定した。

2.6 鉄筋の腐食減量の測定

供試体中鉄筋の腐食程度を確認するために, 乾湿繰返し環境に362日間静置した時点で,無 通電供試体から鉄筋をはつり出した。はつりだ した鉄筋はすぐにJCI-SC1にしたがって,温度 60℃のクエン酸アンモニウム水溶液に24時間 浸漬した。その後,腐食生成物を除去して,鉄 筋質量を測定し,鉄筋の腐食減量を算出した。

3. コンクリートの中性化深さ

促進中性化開始後 1.5 か月および 3 か月経過 した時点における各配合のコンクリートの中性 化深さを図-2に示す。これによると、フライ アッシュまたは高炉スラグ微粉末を混和した場 合は、無混和の場合に比べて同一促進条件によ る中性化深さが大きくなっており、置換率の増 加に伴い、中性化深さは増大する傾向にある。 このような傾向を示す原因としては、フライア ッシュおよび高炉スラグ微粉末の置換率の増加 に伴い、単位セメント量が減少し、セメントの 水和反応により生成される水酸化カルシウムが 減少するとともに、混和材のポゾラン反応ある いは潜在水硬性によって水酸化カルシウムが消

自然電位経時変化

費されたことが考えられる。

4. 無通電供試体中鉄筋の腐食状況

乾湿繰返し環境に静置した無通電供試体中鉄 筋の自然電位の経時変化を図-3に示す。なお, 図中の破線で分割された領域の区分は,ASTM の判定基準を示したものである。この図におい て,促進中性化を行わなかった場合には,鉄筋 の自然電位は不確定領域を推移しており,促進 中性化を行った場合には腐食領域を推移してい る。このことから,図-2に示したコンクリー トの中性化深さは鉄筋位置までは到達していな いものの,中性化と塩害の複合作用により,厳 しい鉄筋腐食環境が形成されたと判断できる。 また, 混和材を用いた供試体では, 特に高炉ス ラグ微粉末を用いた場合に, 無混和の場合に比 べて卑な電位となっていることがわかる。

また,362 日間乾湿繰返し環境に静置した時 点で供試体からはつり出した鉄筋の腐食減量を 図-4に示す。これによると、NPC と FA20 に 関しては,促進中性化を行った場合の方が行っ ていない場合に比べて大きな腐食減量を示して おり,混和材を用いた FA20 の腐食減量が無混 和の場合よりも大きい値を示している。このよ うな傾向は,図-3に示した鉄筋の自然電位測 定結果と良く整合している。なお,BFS50 では, 中性化の影響がない場合における鉄筋腐食減量 が大きくなっているが,これは,乾湿繰返し期 間中に,供試体上部の鉄筋とコンクリートとの 界面部分から供試体内部へ水分が浸入しており, 部分的に激しい腐食部分が生じたことが影響し たものと考えられる。

以上の結果から,フライアッシュや高炉スラ グ微粉末を混和したコンクリートは中性化速度 が大きいことから,特に内在塩分との複合劣化 の場合には,混和材を用いない場合よりも早期 に厳しい鉄筋腐食環境が形成される可能性が高 いと考えられる。

5. デサリネーションによる脱塩効果

通電処理前の供試体中における全塩分量に対 する可溶性塩分量の割合分布を図-5に示す。 促進中性化を行っていない場合では、全塩分量 に対する可溶性塩分量の割合は混和材の有無に よらず、40~50%でほぼ一定となっているが、 促進中性化を行った場合においては、全塩分量 に対する可溶性塩分量の割合が、暴露面付近で 大きくなっており、暴露面に最も近い部分で、 いずれの配合においても、可溶性塩分量が全塩 分量の90%程度を占めている。これは、既往の 研究で報告されている²⁾ように、セメント硬化 体に固定されていた CI⁻が中性化の影響で遊離 したことが原因と考えられる。また、可溶性塩 分量の割合が大きい値を示している部分は、図

図-5 全塩分量に対する可溶性塩分量の割合分布(通電処理前)

-2に示した各配合コンクリートの中性化深さ と良い相関を示していると言える。遊離した Cl は濃度拡散によって未中性化領域に移動し、内 部に全塩分の濃縮層が形成されることが指摘さ れている²⁾が、本研究においては、暴露面から 近い部分に Cl⁻が集積し,内部の未中性化領域 における濃縮現象は認められなかった。これは、 促進中性化期間中の供試体が相対湿度60%と比 較的乾燥した環境に置かれていたために、遊離 した Cl⁻が濃度拡散によって, コンクリート内 部に移動するための水分が不足するとともに、 コンクリート内部の水分が蒸発することによっ て,暴露表面から供試体内部方向へのイオンの 動きが妨げられたことが原因と考えられる。 1.0A/m² で 8 週間通電処理を行った直後の供試 体中の全塩分量分布を図-6に、各供試体の脱 塩率と全供給電荷量に対する CI-の移動に使わ

副人々	電流密度	脱塩	率(%)	Cl ⁻ の輸率(%)		
的百名	(A/m^2)	中性化なし	中性化あり	中性化なし	中性化あり	
NPC	1.0	18.00	52.80	1.21	3.56	
	2.0	28.95	58.85	0.98	1.98	
FA20	1.0	19.55	51.05	1.32	3.44	
	2.0	27.75	56.25	0.94	1.90	
BFS50	1.0	15.60	64.35	1.05	4.34	
	2.0	14.65	66.55	0.49	2.24	

表-2 各供試体の脱塩率とCl⁻の輸率

れた電荷量の比率(以下 Cl⁻の輸率)を表-2 に示す。これらによると、促進中性化を行って いない場合では,通電処理により鉄筋近傍の Cl が若干低減されているものの、全体的に Cl-の 抽出量は小さく,脱塩率は供試体全体で 15~ 30%程度にとどまっている。既往の検討結果で は, 60~70%の脱塩率が報告されている³⁾が, 今回は初期混入 Cl⁻量が 2.0kg/m³と比較的小さ かったため,通電処理により抽出可能な遊離し た CI の割合が小さかったことが原因と考えら れる。土木学会コンクリート標準示方書 [施工 編]では、コンクリート中鉄筋の発錆限界 Cl⁻ 量として 1.2kg/m³を与えている。今回の通電処 理によって 1.0A/m² の電流密度を採用した場合 でも、鉄筋近傍の CI-量は発錆限界レベル付近 まで低減されており, 脱塩率は小さくても補修 効果は得られていると判断することができる。 また、中性化を行わなかった場合に、鉄筋位置 付近で混和材を用いた供試体の残存塩分量が若 干大きくなっている。この原因として、混和材 によるコンクリート細孔構造の変化や CF固定 化性状の変化などが考えられるが、詳細なメカ ニズムについては今後の検討課題としたい。

一方,促進中性化を行った場合においては, 通電処理によりコンクリート中の Cl-量は大き く低減されており,特に暴露表面付近では通電 処理前後で顕著な差が見られる。これは,処理 前の段階で暴露表面付近に集積していた遊離し た Cl-が主に抽出されたことを示している。脱 塩率は供試体全体で50~65%程度を示しており, 特に,混和材による置換率の大きい供試体では 大きな値を示した。これは,3.で述べたように,

図-6 デサリネーション適用直後の供試体に おける全塩分量分布

混和材を用いた場合は無混和の場合よりも同一 促進条件下におけるコンクリートの中性化深さ が大きくなっていることから,暴露表面付近の 遊離 CI 量が大きく,この遊離 CI が優先的にコ ンクリート外に抽出されたことが原因と考えら れる。

以上の結果より,塩害と中性化が複合的に作 用した場合,中性化部分の CI 遊離によって鉄 筋腐食環境は厳しくなるものの,デサリネーシ

ョンによる脱塩効果も遊離 CI-量に応じて大き くなることがわかった。

また,電流密度を 2.0A/m² とした場合には, 特に鉄筋近傍において,脱塩効果の向上が見ら れたが,供給電流量が 2 倍となっているため, **表−2**に示すように Cl⁻の輸率は 1.0A/m²の場合 よりも著しく小さくなり,脱塩効率は良いとは 言えない。

また、1.0A/m²で8週間通電処理を行った後 に乾湿繰返し環境に静置している供試体中鉄筋 の自然電位経時変化を図-7に示す。なお、図 中の破線で分割された領域の区分は、ASTM C876の判定基準にJCIにより規定された防食領 域⁴⁾を加えたものである。これによると、いず れの配合においても通電処理直後の自然電位は 防食領域の値を示しているが、乾湿繰返し期間 の経過とともに鉄筋不動態被膜が再形成され、 電位が徐々に貴変して、最終的には不確定領域 を推移している。図-3と比較すると、特に促 進中性化を行った無通電供試体の場合は、鉄筋 自然電位が腐食領域を推移していることから、 デサリネーションの適用によって鉄筋腐食環境 は改善したものと考えられる。

6. 結論

本研究で得られた結果をまとめると以下の通

りである。

(1)フライアッシュまたは高炉スラグ微粉末を 混和した供試体は無混和の場合に比べて,促進 中性化によるコンクリートの中性化深さが大き くなり,置換率の増加に伴い増大する傾向を示 した。

(2) 無通電供試体中鉄筋の自然電位は, 促進中 性化を行わなかった場合には不確定領域の値で 推移し, 促進中性化を行った場合では腐食領域 の値を示した。また,供試体からはつり出した 鉄筋の腐食減量も中性化速度の大きい混和材を 用いた供試体では, 無混和の場合に比べて大き くなった。

(3) 通電処理前の供試体中 CF濃度分布を測定 したところ,促進中性化を行った場合に,暴露 表面付近の中性化部分で全塩分量に対する可溶 性塩分量の割合が大きくなった。

(4) 初期混入 Cl⁻量が 2.0kg/m³と比較的小さい 条件では, 促進中性化を行わない供試体のデサ リネーションによる脱塩率は供試体全体で 15 ~30%にとどまった。これに対して, 促進中性 化を行った場合は, 暴露表面付近の遊離した Cl⁻ が大きく減少し, 脱塩率は供試体全体で 50~ 65%に達した。

(5) デサリネーション適用時の電流密度を増加 させることで脱塩率の向上が認められたが, Cl⁻ の輸率は低下した。

参考文献

- 松田好史,荒巻智:山陽新幹線鉄筋コンク リート構造物の補修,セメント・コンクリ ート, No.656, pp. 86-91, 2001
- 小林一輔:コンクリートの炭酸化に関する 研究,土木学会論文集,Vol. 433/V-15,pp. 1-14,1991
- 2) 上田隆雄ほか:デサリネーションが鉄筋の 付着挙動に与える影響,土木学会論文集, No.550/V-33, pp.53-62, 1996
- (社)日本コンクリート工学協会:海洋コンクリート構造物の防食指針(案),1990