論文 膨張材と収縮低減剤を使用した収縮応力抑制効果に関する研究

浦野知子*1・石原昌行*2・青木 茂*3・新村 亮*4

要旨:膨張材や収縮低減剤はコンクリート収縮ひび割れの有効な低減対策として使用されて いる。しかし,その低減効果を定量的に評価するための手法は明確化されていない。そこで, 本研究では,膨張材や収縮低減剤を使用したコンクリートの膨張,収縮量などの各種試験を 行い,その膨張・収縮の定量的評価モデルを提案した。そのモデルの妥当性を実構造物の計 測結果から検証し,その評価モデルを用いて膨張材および収縮低減剤を併用した場合の収縮 応力の低減効果を解析的に評価した。

キーワード:膨張材,収縮低減剤,ひび割れ制御

1. はじめに

コンクリートは水和発熱後の温度降下,セメ ント水和反応に伴う自己収縮,乾燥収縮などに より,荷重以外の要因でひび割れが発生する可 能性がある。この種のひび割れは,コンクリー ト構造物の長期耐久性低下の要因となる。

膨張材あるいは収縮低減剤は,この様な収縮 ひび割れの発生を低減させる有効な対策と考え られる。しかし,事前のひび割れ照査で対策の 効果を評価できる様な,膨張材,収縮低減剤の 定量的評価モデルは必ずしも確立されていない。 一方,膨張材と収縮低減剤の併用効果について は高強度コンクリートについて研究が進められ ているが¹⁾,一般のコンクリートのひび割れ防 止を目的とした研究例はまだ少ない。

本研究では普通強度のコンクリートで膨張 材と収縮低減剤を併用した場合の収縮ひずみ低 減効果を室内実験で測定し,これらの材料によ る収縮ひずみ低減効果を数値モデル化した。な お,拘束効果など試験条件による膨張量への影 響についても予備的に試験を行った。次にこの 結果を用いて実構造物の収縮応力のシミュレー ション解析を行い,実応力の測定結果と比較し, モデル化手法の妥当性を検証した。さらに,一 般的な壁状構造物を対象に,収縮応力の数値シ ミュレーションを行い膨張材と収縮低減剤を併 用した場合の収縮応力低減効果を定量的に評価 した。

2. 拘束効果の膨張への影響

2.1 試験ケース

膨張材による膨張量の計測を行うに当たり, 次の2点の確認を行った。

・拘束効果が膨張量におよぼす影響

・ひずみ測定方法の精度

拘束効果については膨張材を多量添加した 場合,無拘束と拘束状態とで膨張量が大きく変 わるという報告²⁾があるため,鉄筋比を0,0.4, 0.95%とし,いずれもJISA 6202A法に準じて 拘束端板を設けた。

2.2 試験方法

使用したコンクリートの配合を表 - 1 に示す。 セメントには普通ポルトランドセメント,膨張 材には近年開発された高性能の石灰系膨張材を 使用した。供試体は 100×100×400mm とし, 材齢 24 時間で脱型後,アルミ箔テープで封緘し, 20 ,60%RHの室内に保管し測定を行った。ひ

*1(株)大林組	東京本社土木技術本部構造技術部 工修 (正会員)
*2(株)大林組	東京本社土木技術本部構造技術部 (正会員)
*3(株)大林組	東京本社土木技術本部構造技術部副部長 工博 (正会員)
*4(株)大林組	東京本社土木技術本部構造技術部課長 工修 (正会員)

ずみの測定方法は 図 - 1 に示す4種類とした。 このうち、「ダイヤルゲージ法」では終結から 24 時間までダイヤルゲージ、以後コンタクトゲ ージで測定を行った。鉄筋ひずみ計では拘束鉄 筋にひずみゲージを貼り付け測定を行った。傾 斜型コンパレータは 24 時間以後の計測に使用 した。

表 - 1 拘束効果試験コンクリートの配合

スランプ	空気量	W/C	単位量(kg/m ³)						
(cm)	(%)	(%)	W	С	EX	S	G	Ad	
12	4.5	55	165	280	20	831	994	0.75	
 EX:膨張材,Ad:AE 減水剤									

2.3 試験結果

鉄筋比 0.95%での測定結果を図 - 1 に示す。 なお,JIS A 6202 A 法と傾斜型コンパレータ法 では 24 時間以前の膨張量にダイヤルゲージ法 のデータを用いた。測定結果では鉄筋ひずみを 除き,他の方法での測定値は概ね一致していた。 鉄筋ひずみは他の方法よりも小さな値となって いる。これは,ひずみゲージ貼付け位置で,コ ンクリートと鉄筋との付着が損失している影響 であると考えられる。

ダイヤルゲージ法を用いた場合の鉄筋比と膨 張量の関係を図 - 2 に示す。自由膨張ひずみが 100~400µ程度では,膨張量と鉄筋比はほぼ線 形の関係が認められる。

 1. 膨張材・収縮低減剤を併用した場合の膨 張・収縮特性

3.1 試験ケース

膨張材と収縮低減剤を併用した場合の収縮 ひずみ低減効果の検討を行った。試験ケースを 表 - 2に示す。

ケーフタ	セメント	膨張材量	収縮低減剤量
		(kg/m^3)	(kg/m^3)
EX0+SR0		0	0
EX10+SR0		10	0
EX20+SR0	普通(N)	20	0
EX10+SR3		10	3
EX20+SR3		20	3
EX10+SR6		10	6
L	低熱(L)	0	0

表 - 2 併用効果試験ケース

EX;膨張材,SR;収縮低減剤

3.2 試験方法

使用したコンクリートの配合を表 - 3 に示す。 収縮低減剤には低級アルコールのアルキレンオ キシド付加物を用いた。

凝結,断熱温度上昇試験,および各材齢にお ける圧縮強度(JIS A 1101),割裂引張強度(JIS A 1113),弾性係数(JIS A 1149),長さ変化率の試 験を行った。長さ変化率試験は前記のダイヤル ゲージ法で行った。供試体は100×100×400mm であり、拘束と無拘束の2種類とした。材齢1 日で脱型後,アルミ箔テープで封緘し20, 60%RHの室内に保管し材齢7日でアルミ箔テ ープをはがし乾燥条件とした。

表 -	3	併用効果試験でのコンクリー	トの配合
-----	---	---------------	------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ריבר°	空气量	W/C	単位量(kg/m ³)				
N 12 4.5 50 167 334 816 976 0.84 L 12 4.5 50 158 316 831 1000 0.79	セメント	(cm)	王XL重 (%)	(%)	W+ SR	C+ EX	S	G	Ad
L 12 4.5 50 158 316 831 1000 0.79	Ν	12	4.5	50	167	334	816	976	0.84
	L	12	4.5	50	158	316	831	1000	0.79

Ad:AE 減水剤

3.3 試験結果

代表的配合での材齢毎の断熱温度上昇経時変 化を図 - 3 に示す。

断熱温度上昇は膨張材を添加することにより 若干大きくなり,一方,収縮低減剤を添加する ことにより未添加の配合より小さくなる傾向が 見られた。これは,収縮低減剤が初期材齢にお いて水和反応を遅延させる影響と考えられる。

なお,圧縮強度については,収縮低減剤を添加した場合,未添加のものと同等であった。引 張強度,弾性係数については膨張材,収縮低減 剤を添加した影響はほとんど認められなかった。

長さ変化率の試験結果を図 - 4,図 - 5に示 す。

拘束供試体を用いた試験結果では膨張材を 10,20kg/m³添加することにより材齢91日の長 さ変化率はそれぞれ160×10⁻⁶,340×10⁻⁶減少し た。さらに,収縮低減剤を3,6kg/m³添加する ことにより材齢91日の長さ変化率はそれぞれ 110~150×10⁻⁶,190×10⁻⁶減少した。膨張材と 収縮低減剤の添加量とその効果にはほぼ比例関 係があり,膨張材と収縮低減剤を併用すること

により両者の性能が重ね合わされる効果が認め られた。無拘束供試体では若材齢での膨張量は 拘束供試体よりも大きな値であったが,長期材 齢では拘束,無拘束条件でひずみの差はほとん ど認められなかった。

3.4 収縮ひずみのモデル化

上記の試験より求められた膨張材と収縮低減 剤を併用した場合の膨張・収縮ひずみのモデル 化を以下の様に行った。

乾燥開始(材齢7日)前のひずみは自己収縮 ひずみと膨張ひずみに分離できるものとし,無 拘束の膨張材添加供試体のひずみから無添加供 試体のひずみを差し引き膨張ひずみ成分を算出 し,次式によりモデル化した。

$$\varepsilon'_{ex}(t) = \eta \varepsilon_{\alpha} \alpha \left[1 - exp \left[-a_{ex} \times (t - t_s)^{bex} \right] \right] \times 10^{-6}$$
(1)

ここに,

'_a::脑張材による脑張ひずみ(µ) : 脑張材添加量(kg/m³) :単位 膨張材当り 最終 脑張量(19.92 µ/kg/m³)

t:材龄(日)

t_s: 脑張開始材齡(凝結終結時間)

aex, bex: 肺張速度に関する係数 (2.0, 1.0)

次に乾燥開始(材齢7日)後の収縮ひずみ増 分については,土木学会コンクリート標準示方 書⁴⁾の収縮の評価式をもとに,膨張材・収縮低 減剤の効果は次式の様に収縮速度・収縮量を低 減することにより表すことにした。

 $\begin{aligned} \varepsilon' cs(t, t_0) &= \\ \left[1 - exp \left\{ -0.108 \times c_{ex}^{dex\alpha} \times c_{sr}^{dsx\beta} \times (t - t_0)^{0.56} \right\} \right] \\ &\times \varepsilon' sh \times g_{ex}^{hex\alpha} \times g_{sr} 0.82^{hsx\beta} \end{aligned}$ (2)

ここに,

'cs:乾燥開始後の収縮量の増分

- to:乾燥開始時の材齢(日)
 - : 収縮低減剤混入量(kg/m³)
 - 'sh:最終収縮量4)

c_{ex}, d_{ex}, c_s, d_s: : 脑張材, 収縮低減剤による収縮 速度低減に関する係数(それぞれ, 0.95, 1/10, 0.90, 1/3)

g_{ex}, h_{ex}, g_{sr}, h_{sr}: 膨張材, 収縮低減剤による最終 収縮量低減に関する係数(それぞれ, 0.90, 1/10, 0.82, 1/3)

試験で求められた膨張・収縮ひずみの実測値 と上記のモデル式から求めた予測値とを比較し た例を図 - 6 に示す。

 実構造計測結果による膨張・収縮モデル の検証

4.1 実構造物および計測の概要

検証で用いた実構造物は、外径 26m ,高さ 20m の PCLNG 地上式タンクである。この内, PC 防 液堤において,温度応力によるひび割れ制御を 目的とし,膨張材 30kg/m³を使用したことから, 計測を行った。

実構造物の構造概略図および計測ポイントを 図 - 7 に示す

計測ポイントは,膨張材を使用した防液堤 2 ロットの断面の中心部とし 熱電対による温度, および有効応力計による応力の計測を実施した。

PC 防液堤に使用したコンクリートの配合お よび解析に用いた物性値を表 - 4 , 表 - 5 に示 す。

表-4 コンクリート配合

スランプ	空気	W/P	単位量(kg/m ³)						
川- (cm)	重 (%)	(%)	W	С	EX	LS	G	S	Ad
65.0	4.5	46.0	175	350	30	196	766	792	8.1
C:低熱ポルトランドセメント , Ad:高性能 AE									
減水	剤								

2.7				
1.15				
:14				
•t ^{1.035}))				
試験結果				
$ft(t)=0.154 \times f^{\circ}c(t)^{0.825}$				
$(t)^{0.386}$				
」より				
1				
7				
言書 4)				
除く)				

表 - 5 実構造物解析用物性値

なお,使用した膨張材は,従来より使用され ているもので,30kg/m³の使用で,2・3章で 使用した高性能の膨張材 20kg/m³と同等の膨張 効果が期待できる。

4.2 温度計測結果と解析値との比較

温度計測結果と解析値との比較を図 - 8 に示 す。

温度の解析値と計測結果は,同様の履歴を示 していることから,解析値は計測結果を良く反 映している。

この温度解析結果を使用し,応力解析を実施 した。その際,膨張材の効果は,自由膨張ひず みを初期ひずみとして入力する初期ひずみ法に より考慮し,自由膨張ひずみは,低減しない場 合と50・70%に低減した場合について解析を行 った。計測値と解析値との比較を図-9に示す。

これより、低減率を70%とした解析値は計測 値を良く反映していると考えられる。従って, 提案モデルの自由膨張ひずみを70%程度に低 減して用いることにより,膨張応力を精度良く 推定することができると考えられる。

5. 壁状構造物における膨張材・収縮低減剤 併用効果

5.1 解析条件

解析により膨張材・収縮低減剤を併用した場 合の収縮応力の低減効果の検討を行った。解析 対象とした構造部は,一般的なスラブ(スラブ 厚:70cm)・側壁(壁厚:60cm,高さ515cm) 構造とし,側壁部について検討を行った。

使用した解析方法を以下に,物性値を表-6 示す。

温度解析:FEM 熱伝導解析

温度応力解析: CP法(JCI)

膨張ひずみ及び収縮ひずみ増分については, 式(1)及び式(2)を用い,初期ひずみとして与えた。

項目	単位	条件				
部位		底版	壁			
セメント種類		N	N	L		
打設温度		25.0	2.5			
熱伝導率	W/m	2.7	2.7	2.7		
比熱	KJ/kg•	1.15	1.15	1.15		
熱伝達率	W/m ²	壁上面 14 壁側面 8(7 日間) 14				
断熱温度上昇量		試験結果				
圧縮強度	N/mm ²	試験結果				
引張強度	N/mm ²	試験結果				
弾性係数	N/mm ²	試験結果				
クリープ性状	N/mm ²	JCI「ひび割れ制御指針」よ 温度上昇時; c=0.44 温度降下時; c=0.67				
収縮量		未考慮	試験結	果より		

表 - 6 併用効果解析用物性値

N:普通,L:低熱ポルトランドセメント

5.2 解析結果

側壁部における温度履歴を図 - 10に,応力 履歴図を図 - 11に示す。

膨張材を混入したものは,若材齢において大 きな圧縮応力が発生し,長期的に引張応力も低 減される結果となった。収縮低減剤を混入した ものは,長期的に発生する引張応力が低減され る結果となった。また,膨張材を20kg混入した 場合,低熱ポルトランドセメントより収縮応力 が低減される結果となった。

6. まとめ

本研究において以下のことが明らかとなった。

- (1)膨張材による膨張ひずみは拘束鋼材の量と 無拘束状態の範囲まで線形関係がある。
- (2) 膨張材の効果と収縮低減剤の効果は添加量に比例し、両者の効果を重ね合わせることができる。
- (3)膨張材と収縮低減剤の効果を数値モデルで 表すことができる。実構造物の実測応力を もとに上記数値モデルを使用し、初期ひず み法による応力シミュレーションを行った ところ、このモデルの膨張ひずみを70%程 度に低減して用いることにより、膨張応力 を精度良く推定することができる。
- (4)膨張材と収縮低減剤の併用効果を数値シミ ュレーションにより評価することができる。 本研究では室内試験でのデータをもとにモ デルの構築を行ったが今後は供試体の寸法,温 度,湿度,配合などの環境条件,拘束状態など の影響も含めて検討する必要がある。

参考文献

- 1) 例えば,谷村充他:高強度コンクリートの収縮低減化に関する研究,コンクリート工学年次論文集,Vol.23,No.2,2001
- 2) 岡田他:コンクリート工学ハンドブック,朝 倉書店,1981
- 3) 日本コンクリート工学協会:自己収縮委員会 報告書,1996
- 4) 土木学会:コンクリート標準示方書(性能照 査編),2002