論文 上・下面増厚工法における高じん性セメント複合材料の補修・補強 効果

栗原 哲彦*1・野田 誠*2・小玉 克巳*3

要旨:高じん性セメント複合材料(DFRCC)の引張軟化曲線の推定を行い,その特徴を検討 した。さらに,DFRCCを上・下面増厚補強に使用したときのDFRCCの補修・補強効果につ いて実験および解析的に検討した。その結果,DFRCCの引張軟化曲線は通常の普通コンクリ ートとは大きく異なり,軟化開始直後に応力が増加する区間を確認することができた。さら に,上・下面増厚補強に使用することにより,最大荷重や最大荷重時変位に著しい改善が見 られた。特に、DFRCCを圧縮部に使用した場合にその効果が最も大きかった。 キーワード:上・下面増厚,高じん性セメント複合材料,補修・補強,引張軟化曲線

1. はじめに

近年の交通車両の大型化や車両の増大,設計 要領の改訂等により,コンクリート構造物の疲 労劣化は進行し,その耐荷性・耐久性は低下し ていると考えられる。疲労劣化したコンクリー ト構造物には,供用を継続するために補修・補 強が必要となる。例えば,道路床版では,代表 的な補強工法に上・下面増厚工法がある。増厚 工法とは,床版の劣化部をはつり,コンクリー トを健全な状態にし,その後,補修・補強材料 で断面を修復する工法である。補修・補強材料 には,鋼繊維補強コンクリートやポリマーセメ ントモルタルがある。

一方,近年,高じん性セメント複合材料 (Ductile Fiber Reinforced Cementitious Composites, DFRCC)が開発されている¹⁾。こ の材料は,曲げモーメントあるいは引張力作用 下においてひび割れ発生後も応力の低下が無く, 見かけのひずみの増加に伴い応力が増加する 「ひずみ硬化特性」と,微細ひび割れが無数に 生じる「マルチプルクラック特性」を有すると ころに特徴がある。コンクリートの脆性的な特 性が改善されていることから,コンクリート構 造物に適用した際,構造性能や耐久性の向上に 寄与するものと期待されている。

本研究では、まず、DFRCCの引張軟化曲線を 推定し、その特徴を検討した。さらに DFRCC を上・下面増厚工法用の補修・補強材として用 いた場合の補修・補強効果について検討した。

2. 高靭性セメント複合材料

高じん性セメント複合材料(以下,DFRCC) は、図-1のように定義され、図-2に示すような 「ひずみ硬化特性」と「マルチプルクラック特性」 の2つの特徴を有する材料である。通常のコン クリートと比較してひび割れ発生後も応力の低 下がなく、その後も応力の増大が認められる。

3. DFRCC の引張軟化曲線

- 3.1 実験概要
- はり供試体

DFRCC により寸法 100×100×400mm のはり 供試体を作製した。表-1 に DFRCC の示方配合 を示す。DFRCC は、モルタルに繊維を混入した ものであり、粗骨材は使用していない。セメン トには早強ポルトランドセメントを用い、細骨

*1 武蔵工業大学講師 工学部都市基盤工学科 工博 (正会員)*2 武蔵工業大学大学院 工学研究科土木工学専攻 (非会員)*3 武蔵工業大学教授 工学部都市基盤工学科 工博 (正会員)

図-1 高じん性セメント複合材料の定義¹⁾

図-2 DFRCCの引張特性の概念図

材には7号珪砂を使用した。繊維には、ポリエ チレン繊維(φ0.012×12mm)を使用した。

供試体にはひび割れ位置を限定するためには り中央下面に切欠き(深さ 30, 50mm)を設けた (SN50, SN30 シリーズ)。さらにはり側面にも切 欠き(深さ 10mm)を設けた供試体(DN50, DN30 シリーズ)も作製した。寸法諸元を表-2に示す。

(2) 載荷方法

載荷方法は、3 点曲げ試験(スパン300mm) とし、材齢14日で行った。荷重および載荷点変 位(以下,変位)をそれぞれロードセル(容量 2kN)および変位計(ストローク25mm)によ り計測した。図-3に3 点曲げ試験の概略を示す。

3.2 解析概要

計測された荷重-変位関係から多直線近似法 ²⁾により引張軟化曲線を推定した。多直線近似 解析法とは、逆解析法の一種である。仮想ひび 割れモデルを用いたひび割れ進展解析を基本と し、ひび割れを進展させるごとに、引張軟化曲 線の先端の勾配を仮定して荷重-変位関係を計

表-1 DFRCC の示方配合

W/C		Ad ^{*3}				
%	W	С	S	V^{*1}	F^{*2}	%
30	342	1264	395	0.9	14.6	3.0
*1:增	粘剤	*2:ポ	リエチ	レン繊	維(体	積混入
1.5%)	*5:	高性能	AE 減	水剤(結合材	に対す
質量百	分率)					

表-2 供試体の寸法諸元

	寸法 (mm)						
シリーズ	はり供試体 幅×高さ×長さ [スパン]	リガメント 幅×高さ	切欠き 幅				
SN50		100×50					
DN50	$100 \times 100 \times$	80×50	2				
SN30	400[300]	100×70	3				
DN30		80 imes 70					

算し,これと実験結果が合致するように引張軟 化曲線を順次決定していくものである。

3.3 荷重-変位曲線およびひび割れ図

図-4 に実験により得られた荷重-変位曲線 を示す。図中には平均曲線(太線,引張軟化曲 線推定に使用)も示す。ひび割れ発生後も荷重 の低下が無く,最大荷重に至るまで荷重は増加 し続け,その後,荷重低下に至っている。

試験終了後のひび割れ図の一例を図-5 に示 す。DN シリーズでは,ひび割れ発生位置が限 定され,複数の微小ひび割れを観察することは できなかったが,SN シリーズでは,リガメン ト部の側面に複数の微細ひび割れを観察するこ とができた。また,リガメント高さの高い方が, ひび割れが多く分散していることが分かる。

3.4 引張軟化曲線および破壊エネルギー

図-6 に推定された引張軟化曲線を示す。 DN30 では,推定された引張軟化曲線が大きく 上下に振動しているが,他の引張軟化曲線は, 供試体形状やひび割れ発生状況にほとんど無関 係に同形状のものが得られた。推定された引張 軟化曲線は,通常の普通コンクリートや短繊維 補強コンクリート(FRC,図-6(b)中の小グラフ ³⁾)のものとは大きく異なり,軟化開始直後に 結合応力の増加が認められた。これは,繊維の 架橋効果が即座に発揮されたためであると考え られる。以上より,DFRCC の引張軟化曲線を

良好に推定することができたが,既往の研究³⁾ から,複数ひび割れが多数発生する場合やひび 割れが複雑に分岐するような場合は,正確な引 張軟化曲線が推定されないことが明らかにされ ている。したがって,ひび割れの分散に対して 十分な注意が必要である。

4. DFRCC による補修・補強効果

- 4.1 実験概要
- (1) はり供試体

補強はり供試体の概略を図-7に、寸法諸元を 表-4に示す。母材のはり供試体は複鉄筋構造の RC はり(床版の切出しを想定)とした。はり 供試体は曲げ破壊型を想定し、圧縮および引張 鉄筋には 2D10(SD295)を配筋し、鉛直スター ラップには供試体中心より D10(SD295)を70 mm間隔で配筋した。下面増厚補強されたはり供 試体には、補強部に補強鉄筋(SD295, 2D6)を 配筋したものとそうでないものとを作製した。

(a) 上面増厚補強されたはり供試体

母材 RC はり 1580 1580 1580 150 下面増厚 2200 レーン 22 レーン 22 (b) 下面増厚補強されたはり供試体

図-7 補強はり供試体の概略 表-4 補強はり供試体の寸法諸元

	母材コンクリート							DFRCC		
	コンクリート部	鉄筋部					コンクリート	鉄筋部		
シリーズ		ノット 下部 弓		張 圧縮		スターラップ		部	補強部	
	幅×高さ×長さ	鉄筋	有効高	建故昌	有効高	建故昌	問[[]	十注	鉄筋	有効高さ
	[スパン] (mm)	量	さ(mm)	坎肋里	さ(mm)	<u></u>	日二日	可伝	量	(mm)
無補強								_	—	—
上面	$200 \times 150 \times 1580$	2D10	11.5	2D10	25	D10	70	$200 \times 22 \times 1480$		—
下面(有)	[1380]	2010	11.5 2	2010	33	D10	70	$200 \times 22 \times 1280$	2D6	153
下面(無)								200~22~1280	_	_

母材のはり供試体を28日間湿布養生した後, はり供試体の上・下縁の付着面を目粗した。そ の後,上・下面にDFRCCを増厚した(厚さ 22mm)。母材コンクリートには、レディーミク ストコンクリート(呼び強度24)を使用した。 コンクリートの示方配合を表-5に示す。DFRCC の配合は,前章の表-1と同じものとした。

(2) 載荷方法

載荷は、スパン1380 mmの3等分点曲げ載荷試 験とした。荷重,載荷点変位,支点沈下量を試 験機附属のロードセル(容量300kN),変位計(ス トローク50mm),変位計(ストローク25mm) により計測した。表-6に試験材齢時の材料定数 を示す。なお,載荷は,はり上縁の圧壊を明確 に観察できた時点で終了とした。

4.2 解析概要

補強はり供試体の荷重-変位曲線を簡易的な 断面解析法により推定した。ここでは、はりは 曲げ破壊し、曲げモーメント区間でひび割れが 1本のみ発生するという仮定のもと、断面力の 釣合いから、曲げモーメントー曲率関係を算出 し、その後、荷重-変位関係を推定する方法を

表-5 母材コンクリートの示方配合

W/C		スランプ				
%	W C^{*1} S^{*2} G^{*3} Ad					(cm)
56.5	158	280	789	1053	2.8	13.0
*1:普通ポルトランドセメント *2:山砂						

*3:砕石 *4:AE 減水剤

表-6 試験材齢時における材料定数

母材コンクリート							
強	度(N/mr	ヤング係数					
圧縮	引張	(kN/mm^2)					
36.9	2.89	28.6					
DFRCC							
強	度(N/mr	ヤング係数					
圧縮	圧縮 引張 曲		(kN/mm^2)				
57.8	8.60	18.0	24.1				

用いた。曲げモーメントー曲率関係を算出する には、切断法⁴⁾を利用した。

断面解析に用いた各材料の圧縮および引張特 性を図-8に示す。各材料の応力ひずみ関係(あ るいは引張軟化曲線)は、示方書⁵⁾、設計指針 (案)⁶⁾または実測(あるいは多直線近似法に よる推定結果)に基づいてモデル化した。 DFRCCの引張軟化曲線は、図-6(b)をモデル化 したものである。

なお,解析上における終局判定は,はり上縁 の圧縮ひずみが終局ひずみに達した時点とした。

図-8 応力ひ9み関係のよび51張戦化曲線のモデル化

- 4.3 実験結果
- (1) 荷重-変位曲線

実験により得られた荷重-変位曲線を図-9 に示す。いずれの補強はり供試体も無補強に比 べ,最大荷重の増加を確認することができた。 しかし,下面(有)および下面(無)では,無 補強と同程度の変形能しか得られなかった。こ れに対して,上面では,著しい変形能が見られ, 最終変形も100mmに近い性能を示した。下面 (有)および下面(無)では,下面(有)が当 然ながら最大荷重が大きくなった。また,下面 (無)では,変位4mmほどで一度ピークを向 え荷重が低下した。その後は,無補強とほぼ同 ド荷重で推移した。表.7 に実験上り得られた最

じ荷重で推移した。表-7 に実験より得られた最 初のひび割れ荷重および最大荷重を示す。

(2) ひび割れ図

図-10 に載荷試験後のはり側面におけるひび 割れ図の一例を示す。上面および下面(有)で は、通常の鉄筋コンクリートはりで見られるひ

シリーズ	ひび 荷重	割れ (kN)	最大荷重(kN)		
	実験	解析	実験	解析	
上面	14.8	16.1	58.8	54.8	
下面(有)	25.0	22.4	63.3	65.9	
下面 (無)	20.3	21.4	33.4	51.8	
無補強	12.8	8.75	33.5	32.3	

表-7 最初のひび割れ荷重および最大荷重

び割れ分散を母材側で観察することができた。 上面では、補強部の DFRCC にひび割れが到達 した後、その進展が止まる結果を得た。最終的 には DFRCC にひび割れが進展し圧壊に至って いる。下面(有)では、DFRCC を抜けたひび 割れは補強筋の影響により母材側でもひび割れ の分散を見ることができた。下面(無)では,他 ほどひび割れの分散を見ることができなかった。

4.4 解析結果

図-9に、解析により得られた荷重-変位曲線 を併記する。表-7に解析から得られた最初のひ び割れ荷重および最大荷重を示す。下面(無) を除き、いずれも荷重-変位曲線を良好に再現 できている。表-7に示す各荷重についても実験 結果と比較的一致している。下面(無)におい て、実験と解析の荷重-変位曲線が大きく異な ったのは、破壊パターンが他と異なるためと考 えられる。つまり、実験では早期に破壊の局所 化が起こり、鉄筋コンクリートはりで見られる ひび割れの分散等の破壊形態を示さなかったた めと考えられる。

以上より, DFRCC を上・下面増厚補強した 場合であっても,ここで用いた比較的簡易な断 面解析方法によって荷重-変位曲線を比較的良 好に再現することができた。つまり,通常の曲 げ解析で評価できることが確認された。

5. まとめ

以上, DFRCC の補修・補強効果について検 討した結果, 以下ことが明らかとなった。

(1) DFRCC の引張軟化曲線を多直線近似法に推 定することができた。その形状は通常の普通

図-10 補強はり供試体のひび割れ図

コンクリートや短繊維補強コンクリートと は大きく異なり,繊維の架橋効果が著しく発 揮されている形状を示した。

- (2) DFRCC を上・下面増厚補強に用いることで 十分な補強効果を確認することができた。特 に、DFRCC を圧縮部に適用することで変形 能を向上させることができた。
- (3) 鉄筋コンクリートはりで用いられている通常の曲げ解析により上・下面増厚補強されたはりの荷重-変位曲線を評価できることが分かった。

参考文献

- 日本コンクリート工学協会:高靭性セメン ト複合材料の性能評価と構造利用研究委員 会報告書,2002.1
- 日本コンクリート工学協会:コンクリートの引張軟化曲線の評価(案),コンクリートの破壊特性の試験方法に関する調査研究委員会報告書, pp. 418-426, 2001.5
- 3) 荒川 建ほか:引張軟化曲線による鋼繊維 補強コンクリートの性能評価,コンクリー ト工学年次論文報告集, Vol. 19, No. 2, pp. 105-110, 1997
- 内田裕市ほか:コンクリートの曲げ強度の 寸法効果に関する破壊力学的検討,土木学 会論文集, No. 441, V-16, pp. 101-107, 1992
- 5) 土木学会:コンクリート標準示方書,構造 性能照査編,2002 年制定
- 1
 6) 土木学会:鋼繊維補強鉄筋コンクリート柱 部材の設計指針(案),平成11年版