# 論文 補強材の付着すべりを考慮した2軸曲げを受けるコンクリート梁部材 の大変形解析

越川 武晃\*1·上田 正生\*2·和田 俊良\*3·菊地 優\*4

**要旨**:本論文は,個々の梁要素内では微小変形を保持しながら,部材全体として大変形領 域をも容易に取り扱うことが可能な,補強材の付着すべりを考慮した2軸曲げを受けるコ ンクリート梁部材の材料非線形解析手法について報告するものである。本論では,まず本 解析法の定式化の概要について示されており,次いで既往の実験結果との比較により,本 解析法の妥当性が検証されている。

キーワード: 付着すべり, 2 軸曲げ, コンクリート梁部材, 大変形, 材料非線形解析

#### 1. はじめに

我が国のコンクリート構造物においては、長 柱や薄い平板といった特別な場合を除いて、一 般に幾何学的非線形性が問題になることはほと んど無いとされてきたが、近年のコンクリート 構造物の高層化・大スパン化に伴い、断面丈に 比してスパンを格段に大きく取ることが可能な PC部材のように、この影響を無視し得ないコ ンクリート構造の採用が増加してきているのは、 周知のとおりである。従って、この種のコンク リート構造における様々な力学特性を取り入れ、 任意の外力に対する変形性状を適切に評価する ことが可能な解析手法を整備しておくことは必 要なことのように思われる。

著者等は既往の研究<sup>1)</sup>において,各梁要素に 関しては微小変形理論を成立させながら,部材 全体として幾何学的非線形性を考慮することが 可能な手法<sup>2)</sup>を用いた「補強材の付着すべりを 考慮した1軸曲げを受けるPC梁部材の大変形 解析」について報告した。本論文は,この解析 法を拡張・発展させ,コンクリート立体フレーム 構造を構成する柱や梁のように2軸曲げを受け るコンクリート部材をも取り扱うことが可能な,





大変形領域を考慮したコンクリート梁部材の材 料非線形解析手法について報告するものであり, あわせて若干の数値計算例を示し,既往の実験 結果との比較・考察を行うものである。

## 2. 基本仮定事項

本解析の定式化を行うために用いた基本仮定 事項は以下のとおりである。

1) 変形前の部材軸方向を X 軸, X 軸と直行す

- \*1 北海道大学大学院 工学研究科社会基盤工学専攻 工修(正会員)
- \*2 北海道大学大学院教授 工学研究科社会基盤工学専攻 工博(正会員)
- \*3 北海道職業能力開発大学校講師 建築科 工博(正会員)
- \*4 北海道大学大学院助教授 工学研究科社会基盤工学専攻 工博

る平面内にY軸およびZ軸を右手系に定めた全 体座標系を座標空間上に固定し,部材の変形は その座標系に関して定義されるものとする(全 体変位)。

2) 部材の大変形領域をも取り扱えるように,一 荷重ステップ前の変形後の各梁要素の軸方向を *x*軸,*x*軸と直行する*y*軸および*z*軸を変形量に 応じて右手系に定めた要素(局部)座標系を各梁 要素ごとに設定し,それらの座標系は,部材の 各荷重ステップの増加に伴う変形と共に平行・ 回転移動するものとする。

3)梁には軸力(緊張荷重を含む)と曲げおよび ねじりが作用するものとし、各要素座標系に関 しては平面保持の仮定に基づく微小変形理論が 適用できるものとする。

4) 解析には有限要素解析を用いるものとし、梁
 部材の断面を図-1に示すように y 軸方向に m
 部分, z 軸方向に n 部分に仮想分割して取り扱
 うファイバーモデルで表示する。

5) 梁断面内に l 本配筋されている補強材とコン クリートの間には,要素軸方向の付着すべりが 生じ得るものとし,ある位置における個々の補 強材のすべり変位は,平面が保持されるその位 置のコンクリート部分からの相対変位で表示で き,また,付着応力  $\tau_{b_k}$ とすべり変位  $s_k$ の間に は,区間線形関係が成立するものとする。

6) 梁要素内の個々のコンクリート部と補強材の 材料特性は,各要素の各部ごとに,その歪履歴 の状態に応じて各解析ステップにおいて変化す るが,個々のファイバー内では,その中央位置 の値で評価される一定の性状を有するものとす る。

7) 非線形解析手法としては荷重増分法を採用す ることにし,各荷重ステップごとに繰り返し計 算によって解を求める。

8) 要素軸回りのねじり変形に関しては,サンブ ナンの理論に従うものとし,本論では簡略化の ため,ねじりによる剛性低下は考慮しない(部 材のせん断弾性係数*G*とねじり定数*J*は一定値 を有する)こととする。

## 3. 要素座標系の有限要素法への定式化

3.1 変位場、および歪増分と応力増分

## (1) 変位場

本解析を行うために要素座標系に関して設定 する変位場は、図-2に示すように梁の基準軸 上の要素軸方向の変位uと、y軸方向の変位v、 z軸方向の変位w、要素軸回りの回転角 $\theta$ 、およ び梁断面内にl本配筋されている補強材のすべ り変位 $s_1, s_2, \ldots, s_k, \ldots, s_l$ の計(4+l)個の変 位である。材料非線形解析に当たっては、これ らは増分形式で表示されることになる。

## (2) コンクリートの歪増分と応力増分

x軸(要素軸)からy軸方向に $y_i$ , z軸方向 に $z_j$ だけ離れた任意のコンクリート部ijの歪 増分  $\Delta \varepsilon_{c_{ij}}$ および応力増分  $\Delta \sigma_{c_{ij}}$ は、次式で表 される。

$$\Delta \varepsilon_{c_{ij}} = \Delta \varepsilon_o - y_i \Delta \phi_z + z_j \Delta \phi_y$$
$$= \frac{d\Delta u}{dx} - y_i \frac{d^2 \Delta v}{dx^2} - z_j \frac{d^2 \Delta w}{dx^2} \qquad (1)$$

$$\Delta \sigma_{c_{ij}} = E_{c_{ij}} \Delta \varepsilon_{c_{ij}} \tag{2}$$

但し、 $\Delta \varepsilon_o$ :梁の軸方向歪増分、 $\Delta \phi_y, \Delta \phi_z$ :そ れぞれ y 軸回りおよび z 軸回りの梁の曲率の 増分量、 $E_{c_{ij}}$ :コンクリート部ijの接線ヤング 係数

## (3) 補強材の歪増分と応力増分

任意のk本目の補強材の歪増分 $\Delta \varepsilon_{s_k}$ および 応力増分 $\Delta \sigma_{s_k}$ は、次のように表示される。

$$\begin{split} \Delta \varepsilon_{s_k} &= \Delta \varepsilon_o - y_{s_k} \Delta \phi_z + z_{s_k} \Delta \phi_y + \Delta \varepsilon_{ss_k} \\ &= \frac{d\Delta u}{dx} - y_{s_k} \frac{d^2 \Delta v}{dx^2} - z_{s_k} \frac{d^2 \Delta w}{dx^2} + \frac{d\Delta s_k}{dx} \quad (3) \\ \Delta \sigma_{s_k} &= E_{s_k} \Delta \varepsilon_{s_k} \quad (4) \end{split}$$

但し、 $y_{s_k}, z_{s_k}$ :それぞれk本目の補強材のy軸方向およびz軸方向への要素軸からの距離、 $\Delta \varepsilon_{ss_k}: k$ 本目の補強材のすべり率の増分量、 $E_{s_k}: k$ 本目の補強材の接線ヤング係数

## (4) 補強材のすべり変位増分と付着応力増分

任意のk本目の補強材の付着界面に生じる付 着応力増分 $\Delta \tau_{b_k}$ とすべり変位増分 $\Delta s_k$ の間に は、基本仮定により次の関係が成立する。

$$\Delta \tau_{b_k} = K_{b_k} \Delta s_k \tag{5}$$

但し, K<sub>b<sub>k</sub></sub>: k本目の補強材の接線付着係数

3.2 全ポテンシャル・エネルギー汎関数

前節で求めたコンクリート梁各部の歪と応力 の関係式を用いると,補強材の付着すべりを考 慮したコンクリート梁部材のための増分表示さ れた全ポテンシャル・エネルギー汎関数 ΔΠ は, 以下のようになる。

$$\begin{split} \Delta \Pi &= \frac{1}{2} \int_0^L \left[ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} \right. \\ &+ \sum_{k=1}^l A_{s_k}^* E_{s_k} \right\} \left( \frac{d\Delta u}{dx} \right)^2 \\ &- 2 \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} y_i \right. \\ &+ \sum_{k=1}^l A_{s_k}^* E_{s_k} y_{s_k} \right\} \left( \frac{d\Delta u}{dx} \right) \left( \frac{d^2 \Delta v}{dx^2} \right) \\ &- 2 \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} z_j \right. \\ &+ \sum_{k=1}^l A_{s_k}^* E_{s_k} z_{s_k} \right\} \left( \frac{d\Delta u}{dx} \right) \left( \frac{d^2 \Delta w}{dx^2} \right) \\ &+ 2 \sum_{k=1}^l A_{s_k} E_{s_k} \left( \frac{d\Delta u}{dx} \right) \left( \frac{d\Delta s_k}{dx} \right) \\ &+ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} y_i^2 \right. \\ &+ 2 \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} y_i z_j \right. \\ &+ 2 \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} y_i z_j \right. \\ &+ \sum_{k=1}^l A_{s_k}^* E_{s_k} y_{s_k} \right\} \left( \frac{d^2 \Delta v}{dx^2} \right) \left( \frac{d\Delta s_k}{dx} \right) \\ &- 2 \sum_{k=1}^l A_{s_k} E_{s_k} y_{s_k} \left( \frac{d^2 \Delta v}{dx^2} \right) \left( \frac{d\Delta s_k}{dx} \right) \\ &+ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} z_j^2 \right. \\ &+ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} z_j^2 \right. \\ &+ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} z_j^2 \right. \\ &+ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} z_j^2 \right\} \left. \\ &+ \left\{ \sum_{i=1}^m \sum_{j=1}^n \Delta t_{y_i} \Delta t_{z_j} E_{c_{ij}} z_j^2 \right\} \right\} \left( \frac{d^2 \Delta w}{dx^2} \right)^2 \end{split}$$

$$-2\sum_{k=1}^{l} A_{s_{k}} E_{s_{k}} z_{s_{k}} \left(\frac{d^{2}\Delta w}{dx^{2}}\right) \left(\frac{d\Delta s_{k}}{dx}\right)$$
$$+\sum_{k=1}^{l} A_{s_{k}} E_{s_{k}} \left(\frac{d\Delta s_{k}}{dx}\right)^{2}$$
$$+\sum_{k=1}^{l} A_{bs_{k}} K_{b_{k}} \Delta s_{k}^{2} + GJ \left(\frac{d\Delta \theta}{dx}\right)^{2} dx$$
$$-\int_{0}^{L} \left\{\Delta P_{u} \left(\frac{d\Delta u}{dx}\right) + \Delta q_{y} \Delta v + \Delta q_{z} \Delta w$$
$$+\sum_{k=1}^{l} \Delta P_{s_{k}} \frac{d\Delta s_{k}}{dx} + \Delta P_{\theta} \frac{d\Delta \theta}{dx} \right\} dx \qquad (6)$$

但し,L:要素長, $\Delta t_{y_i}, \Delta t_{z_j}$ :それぞれコン クリート部 ij の幅および高さ, $A_{s_k}^*: k$ 本目の 補強材の換算断面積で $A_{s_k}^* = A_{s_k} \left(1 - \frac{E_{c_{ij}}}{E_{s_k}}\right)$ ,  $A_{s_k}: k$ 本目の補強材の断面積, $A_{bs_k}: k$ 本目 の補強材の単位長さ当たりの付着面積, $\Delta P_u$ : 要素軸方向の分布荷重増分, $\Delta q_y: y$ 軸方向の 分布荷重増分, $\Delta q_z: z$ 軸方向の分布荷重増分,  $\Delta P_{s_k}: k$ 本目の補強材の緊張荷重増分, $\Delta P_{\theta}:$ x軸回りのねじりモーメント増分

**3.3 コンクリート梁要素の有限要素方程式** 本論で使用するコンクリート梁要素の設定変 位増分  $\Delta u, \Delta v, \Delta w, \Delta \theta, \Delta s_k$  (但し,  $k = 1 \sim l$ ) の変位関数を,それぞれ1次,3次,3次,1次, 1次の関数で表現することにする。先の式(6) にここで設定した変位関数を代入し,各節点変 位ベクトル { $\delta u$ },{ $\delta v$ }, { $\delta w$ },{ $\delta \theta$ }, { $\delta s_k$ } (但し,  $k = 1 \sim l$ ) に関して変分をとり整理すると,最 終的に要素座標系に関する有限要素方程式が以 下のように得られることとなる。

$$\begin{bmatrix} K_{uu} & K_{uv} & K_{uw} & 0 & K_{us} \\ K_{uv}^T & K_{vv} & K_{vw} & 0 & K_{vs} \\ K_{uw}^T & K_{vw}^T & K_{ww} & 0 & K_{ws} \\ 0 & 0 & 0 & K_{\theta\theta} & 0 \\ K_{us}^T & K_{vs}^T & K_{ws}^T & 0 & K_{ss} \end{bmatrix} \begin{pmatrix} \delta u \\ \delta v \\ \delta w \\ \delta \theta \\ \delta s \end{pmatrix} = \begin{cases} \delta P_u \\ \delta P_v \\ \delta P_w \\ \delta P_\theta \\ \delta P_s \end{cases}$$
(7)  
但し,  $\{\delta s\}$ : すべての補強材の節点すべり変位  
 $s_k$ に関する節点変位ベクトル増分

4. 大変形領域を考慮した非線形解析手法

本解析では変形前の部材について規定される



図-3 変形前後の座標と変位

全体座標系 (X, Y, Z) と, 各梁要素の変形に伴っ て平行・回転移動する要素座標系 (x, y, z) とを 設定し, 部材に作用した節点荷重と, 要素座標 系の変位による各梁要素の節点力とが全体座標 系に関して平衡するように, 順次繰り返し計算 を行うことにより, 個々の梁要素内では微小変 形を保持しながら, 部材全体として大変形が考 慮されることになる。ここでは, この非線形解 析手法の概要について記述することにする。

## 4.1 解析手順

本非線形解析の解析手順は次のとおりである。 1) 任意の荷重増分ステップにおいて,部材に作 用した節点荷重に対する全体座標系の節点変位 (全体変位)を求める。

2) 全体変位から,変形後の各梁要素に対してそ れぞれ別個に設定された要素座標系に関する節 点変位増分(要素変位増分)を求める。

 3) 要素変位増分をそれぞれ式(7) に代入し,各 梁要素の要素座標系に関する節点カベクトル {δP<sub>ei</sub>} を求める。

4) 節点力ベクトル  $\{\delta P_{ei}\}$  を全体座標系に座標 変換し、部材に作用した節点荷重増分との非釣 合い節点力を求める。これは次の計算ステップ において部材に作用させる節点荷重となる。

5) 各梁要素の剛性マトリックス [K<sub>ei</sub>] を全体座
 標系に座標変換し、次の計算ステップに用いる
 部材の剛性を求める。

6)上記の一連の計算を,非釣合い節点力が十分 小さくなるまで繰り返し行い,平衡状態に達し た後に新たな荷重増分ステップの計算を行う。

## 4.2 要素座標系の節点変位

図-3は、任意の梁要素における変形前後の全体座標系 (X, Y, Z)および要素座標系 (x, y, z)の関係と、各座標系に関する変位を表したものである。この図に示すように、変形前の梁要素内の点  $P^*$ が変形した後に点 Pに移動したとすると、平行・回転移動した後の要素座標系に関しては、点  $P^*$ と同じ x 軸位置の点 P'から点 P への移動が 生じていることになる。これより、この位置の要 素座標系の変位  $u, v, w, \frac{dv}{dx}, \frac{dw}{dx}$ は、この時点の点  $P^*$ の全体座標系に関する変位  $U, V, W, \frac{dV}{dX}, \frac{dW}{dX}$ を用いて、それぞれ次のように表示することが できる。

$$\begin{cases}
 u \\
 v \\
 w
\end{cases} = \begin{bmatrix}
 a_{x_X} & a_{x_Y} & a_{x_Z} \\
 a_{y_X} & a_{y_Y} & a_{y_Z} \\
 a_{z_X} & a_{z_Y} & a_{z_Z}
\end{bmatrix} \begin{cases}
 U - U_j + (1 - a_{x_X}) x^* \\
 V - V_j - a_{x_Y} x^* \\
 W - W_j - a_{x_Z} x^*
\end{cases} (8)$$

$$\frac{dv}{dx} = \frac{a_{x_X} R_y}{1 - a_{y_Y} R_y - a_{z_Y} R_z} \tag{9}$$

$$\frac{dw}{dx} = \frac{a_{x_X} R_z}{1 - a_{y_X} R_y - a_{z_X} R_z}$$
(10)

$$\text{CCR} \left\{ \begin{aligned} R_y &= \left( a_{y_X} + a_{y_Y} \frac{dV}{dX} + a_{y_Z} \frac{dW}{dX} \right) \\ R_z &= \left( a_{z_X} + a_{z_Y} \frac{dV}{dX} + a_{z_Z} \frac{dW}{dX} \right) \end{aligned} \right.$$

但し, *a*<sub>12</sub>:1-2座標軸間の方向余弦, *U<sub>j</sub>*, *V<sub>j</sub>*, *W<sub>j</sub>*: それぞれ要素座標軸の原点である節点 *j* の *X* 軸・Y 軸・Z 軸方向の全体変位, *x*\*:点 *P*\*の *x* 軸の座標値

また,部材軸回りの回転角 $\theta$ ,および任意のk本 目の補強材のすべり変位 $s_k$ は,要素座標軸の移 動による影響は受けないものとし,それぞれ全 体座標系の変位 $\theta$ , $S_k$ を用いて下式で表示する。

$$=\Theta$$
 (11)

$$s_k = S_k \tag{12}$$

## 4.3 全体座標系への座標変換

θ

任意の梁要素iの全体座標系に関する節点力 ベクトル増分  $\{\delta P_{gi}\}$ および剛性マトリックス  $[K_{gi}]$ は、座標変換マトリックス [T]を用いてそ れぞれ次式で表示することができる。

$$\{\delta P_{gi}\} = \begin{bmatrix} \begin{bmatrix} T \end{bmatrix}^T & 0 \\ 0 & \begin{bmatrix} T \end{bmatrix}^T \end{bmatrix} \{\delta P_{ei}\}$$
(13)



$$\begin{bmatrix} K_{gi} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} T \end{bmatrix}^T & 0 \\ 0 & \begin{bmatrix} T \end{bmatrix}^T \end{bmatrix} \begin{bmatrix} K_{ei} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} T \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} T \end{bmatrix} \end{bmatrix}$$
(14)  

$$\Xi \subseteq \zeta \zeta,$$

|       | $a_{x_X}$ | $a_{x_Y}$ | $a_{x_Z}$ | 0         | 0         | 0 | 0 |      |
|-------|-----------|-----------|-----------|-----------|-----------|---|---|------|
|       | $a_{y_X}$ | $a_{y_Y}$ | $a_{y_Z}$ | 0         | 0         | 0 | 0 |      |
|       | $a_{z_X}$ | $a_{z_Y}$ | $a_{z_Z}$ | 0         | 0         | 0 | 0 |      |
| [T] = | 0         | 0         | 0         | $a_{z_Z}$ | $a_{z_Y}$ | 0 | 0 | (15) |
|       | 0         | 0         | 0         | $a_{y_Z}$ | $a_{y_Y}$ | 0 | 0 |      |
|       | 0         | 0         | 0         | 0         | 0         | 1 | 0 |      |
|       | 0         | 0         | 0         | 0         | 0         | 0 | 1 |      |

但し、上式中の  $\{\delta P_{ei}\}$  および  $[K_{ei}]$ は、それぞれ 式(7)の節点変位ベクトルの並び順を各節点ご とにまとめて、 $\{\Delta u \, \Delta v \, \Delta w \, \Delta \frac{dv}{dx} \, \Delta \frac{dw}{dx} \, \Delta \theta \, \Delta s\}^T$ としたものに対応する値である。

## 5. 材料特性の仮定と構成関係

図-4は、解析に用いたコンクリートと補強 材の材料特性、および補強材とコンクリート間 の付着応力とすべりの構成関係を掲げたもので ある。尚、これらは既報告<sup>1),3)</sup>で使用したもの と同様である。

#### 6. 数值計算例

本論で展開したコンクリート梁部材の大変形 解析法の妥当性を検証するために,若林等<sup>4)</sup>の 行った一連の2軸偏心圧縮力を受けるRC長柱 試験体のうち二体を取り上げて,計算を行うこ とにする。図-5に,各RC長柱試験体(試験体 名:A420,A220)の概要と軸圧縮力の載荷位置, および解析に用いた仮定材料特性を示す。この 図から分かるように,8本の主筋が対称に配筋 された正方形断面を有するこの二体の試験体は, スパンが断面丈の約25倍と大変形の影響を無 視し得ない極端にスレンダーな部材である。

図-6および図-7は、それぞれ試験体A420 およびA220のスパン中央点における荷重-変 形曲線を、実験値と本解析値、および大変形の 影響を考慮していない通常の微小変形理論を適 用した場合の解析値とで比較したものである。 このうち y,zの両断面主軸に対称に載荷された 試験体A420の2種類の解析値においては、実 験時のばらつきが表現されず、両主軸方向の変 位が同値となるために、それぞれ1つの曲線で 示してある。これらの結果から明らかなように、 本解析値は若干の誤差はあるものの、初期剛性 から最大耐力に至るまで実験曲線に比較的良く 対応している。しかし、微小変形理論による解 析値を見てみると分かるように、図に示した荷 重の範囲内では部材剛性の低下はほとんど見ら



図-5 RC 長柱試験体の概要と仮定材料特性



れずに、これらの試験体の荷重-変形応答が全 く表現されておらず、また図には示されていない が、この解析法による試験体 A420 および A220 の最大耐力はそれぞれ 354kN, 378kN となって おり、実験値のほぼ倍の値を与えた。

図-8および図-9は、試験体側面中央部のコ ンクリート表面における軸方向歪の推移を、実 験値と本解析値で対比して示したものである。 本解析では、試験体A420の側面C,Dおよび試 験体A220の側面Dに見られるような、圧縮側 から引張側への歪の戻り現象をも含めて、試験 体中央部における軸方向歪の分布性状が適切に 表現されており、ここに本解析法の妥当性を見 て取ることができる。

## 7. まとめ

本論文では、「コンクリートと補強材間に付着 すべりを許した場合の、大変形領域をも取り扱 い可能な2軸曲げを受けるコンクリート梁部材 の材料非線形解析法」について論じた。即ち、こ の問題のための有限要素法への定式化の概要に ついて記述し、次いで大変形領域を考慮した非 線形解析手法について示した。更に、本解析法 による数値計算例を掲げ、解析結果と既往の実



図-9 試験体 A220 の荷重-歪曲線の比較

験結果との比較により、本解析法の有用性を明 らかにした。今後は、この解析法をコンクリー ト梁部材の最大耐力以降の荷重-変形応答をも 適切に評価し得るような、より精度の高い材料 非線形解析へと拡張・発展させる予定である。

参考文献

- 1) 越川武晃,井上圭一,上田正生,和田俊良: 補強材の付着すべりを考慮した PC 梁部材 大変形解析,コンクリート工学年次論文集, Vol.24, No.2, pp.313-318, 2002.6
- Murray, D. W. and Wilson, E. L.: Finite-Element Large Deflection Analysis of Plates, ASCE, Vol.95, No.EM1, pp.143-165, Feb.1969
- 3) 松倉満智子、上田正生、内山武司、土橋由 造:緊張鋼材の付着すべりを考慮したプレ ストレストコンクリート梁部材の材料非線 形解析、コンクリート工学年次論文報告集, Vol.17, No.2, pp.709-712, 1995
- 4) 若林實,南宏一,岩井哲:2軸曲げを受ける 鉄筋コンクリート長柱の弾塑性安定に関す る実験的研究(その3),京都大学防災研究 所年報, Vol.27, B-1, pp.173-187, 1984.4