論文 有開口耐震壁の力学性状に及ぼす載荷速度の影響

松岡良智*1・江崎文也*2・小野正行*3

要旨: せん断余裕度が異なる開口周比 0.28 の開口を設けた有開口耐震壁試験体 8 体につい て,載荷速度が層間変形角速度 0.014%/sec と 1.4%/sec の一方向載荷と繰返し載荷実験を行 い,載荷速度の影響について検討を行った結果、水平せん断耐力とその耐力低下は載荷速度 と履歴パスの影響を受けること,水平せん断耐力の上昇は既往の材料強度上昇率の提案式で 大略評価できること,また,せん断余裕度が 1.0 の一方向載荷の破壊モードは載荷速度の影 響を受け,せん断破壊モードに移行することなどを明らかにした。

キーワード:有開口耐震壁,載荷速度,履歴パス,破壊モード,耐力上昇率

1. 序

地震時には、種々の速度で連続的に水平力が 建物に作用する。このため,RC造建築物の重 要な耐震要素として用いられている耐震壁の地 震時の挙動を解明する為には,種々の速度で水 平力が作用する場合の力学的挙動を明らかにす る必要がある。著者らは,RC造無開口耐震壁の 力学挙動に及ぼす載荷速度の影響を明らかにす るために,載荷速度や履歴パスおよび破壊モー ドを実験変動因子とした実験を行った¹⁾。その 結果,載荷速度が速くなると,いずれの破壊 モードの試験体とも水平せん断耐力が上昇し た。そこで,有開口耐震壁の力学挙動に及ぼす 載荷速度の影響を実験的に明らかにするために ,無開口耐震壁の終局強度算定式^{2),3)}を用いて, せん断余裕度(=せん断による耐力/曲げによる 耐力)が1.0および0.5程度になるように断面を 設計した曲げ・せん断破壊モードおよびせん断 破壊モードの無開口耐震壁の壁板中央に,開口 周比が0.28の開口を設けた有開口試験体8体に ついて,載荷速度と履歴パスを実験変動因子と した水平力載荷実験を計画した。本論は,一定 速度で水平力を載荷させた有開口耐震壁の力学 性状について述べたものである。

- 2. 実験概要
- 2.1 試験体

表 - 1 に試験体一覧を,表 - 2 には,使用材 料の力学的性質を示す。また,図 - 1 に試験体 形状および配筋図を示す。実験変動因子は,載 荷速度と履歴パスおよび破壊モードである。試

表 - 1 試験体一覧

		Column		Wall					
Specimens	Section	Section Longi.Rein.		Thickness	Reinforcement		Dimension of opening		
	$b \mathbf{x} D$	p_g	p_w	t	Arrangement p_s		$h_0 \ge l_0$		
	(mmxmm)	(%)	(%)	(mm)		(%)	(mmxmm)		
FS0W5-0.28C-2.5-0.014	150x150	8-D10 (2.5)	4¢@50 (0.33)	50	4¢@50 Single Layer	0.5	210x315		
FS0W5-0.28C-2.5-1.4									
FS1W5-0.28C-2.5-0.014									
FS1W5-0.28C-2.5-1.4									
S0W5-0.28C-4.5-0.014									
S0W5-0.28C-4.5-1.4		8-D13							
S1W5-0.28C-4.5-0.014		(4.5)							
S1W5-0.28C-4.5-1.4									
p_g : 主筋比, p_w : 帯筋比, p_s : 壁筋比, t : 壁厚, h_o : 開口高さ, l_o : 開口幅									

*1 近畿大学工業高等専門学校助手 建設システム工学科 修士(工学)(正会員)

*2九州共立大学教授 工学部建築学科 工博(正会員)

*3 近畿大学教授 九州工学部建築学科 博士(工学) (正会員)

表 - 2 材料の力学的性質

(1) コンクリート

Specimen	σ_B	σ_t		
FS0W5-0.28C-2.5	24.2	2.1		
FS1W5-0.28C-2.5	31.7	2.3		
S0W5-0.28C-4.5	25.8	2.6		
S1W5-0.28C-4.5	26.6	2.4		

 σ_{R} :シリンダー圧縮強度(MPa)

σ,:割裂強度(MPa)

(2)鉄筋

Specimen	bar	а	σ_{y}	σ_u	E_s
	4φ	0.13	160	301	131
FS1W5-0.28C-2.5	D10	0.71	362	504	189
	D13	1.27	354	486	185
ESOW5 0 28C 2 5	4ф	0.13	160	301	131
F 50 W 5-0.28C-2.5 S1W5-0.28C-4.5	D10	0.71	375	528	178
51 W 5-0.20C-4.5	D13	1.27	354	486	185
	4ф	0.13	237	315	131
S0W5-0.28C-4.5	D10	0.71	375	528	178
	D13	1.27	354	486	185

a:断面積(cm²),σ_y:降伏点(MPa)

 σ_u : 引張強度(MPa), E_s : ヤング係数(GPa)

験体には,FS[S]aW*t*- ξ C- p_g - V_R の記号を付けて いる。FSは曲げ・せん断破壊モードの試験体, Sはせん断破壊試験体,aは制御変位でのサイ クル数,tは壁厚(cm), ξ は等価開口周比 $\sqrt{h_0/h}$ (h_o ;開口高さ, l_o ;開口幅,h;階高,l;スパン 長),Cは中央開口, p_g は柱主筋比(%), V_R は 載荷速度(%/sec)をそれぞれ示している。開口 の大きさは,開口周比が0.28 である。

2.2 載荷方法および載荷プログラム

図 - 2 に示す載荷装置を用いて,試験体両側

柱の中心に,それぞれ110kNの鉛直荷重を2台 のアクチュエータで載荷した。鉛直荷重は,実 験終了時まで一定に保持するようにした。鉛直 荷重載荷後は,図-3に示す計画載荷プログラ ムにて,試験体に変位漸増正負繰返しおよび一 方向単調変位漸増の水平力を載荷した。水平力 の載荷速度は,上部の剛な側梁下端の層間変形 角Rの速度が従来の手動で行う水平力載荷実 験と同等の速さである0.014%/secとその100 倍の1.4%/secになるようにした。これは,実際 の地震時の約1/5~1/10の応答速度である。R は上部の剛な梁の中央部における水平変位δを 基礎梁上端より上部梁下端までの高さh(70cm) で除した値δ/h である。

2.3 測定方法

図 - 4 に測定装置を示す。側柱脚部の柱主筋 にひずみゲージを貼付し,側柱主筋のひずみを 測定した。水平および垂直の各荷重,試験体各 部の水平と鉛直の各変位および鉄筋のひずみ は,いずれも動ひずみ測定器にてデータを取り 込んだ。パソコンに取り込んだデータのサンプ

図 - 4 測定装置

リング間隔は,載荷速度が0.014%/secの時は 0.2sec,1.4%/secの時は0.002secである。試験 体に生じたひび割れおよびコンクリートの剥落 の記録は,目視,写真撮影およびビデオカメラ による撮影によった。

3. 実験結果

3.1 破壊性状および履歴性状

図 - 5 a, 5 b に,各試験体の $\mathcal{T}_u \left\{=Q_{\xi}/(tl_w), \sqrt{\sigma_B}\right\}(l_w=l-l_0, e_xQ_{\xi}:水平せん断耐力実験値)と$

Rの履歴曲線,および実験終了時のひび割れと 破壊状況を示す。図 - 5 a, 5 bの縦軸は各試 験体のコンクリート強度が異なるため,水平 荷重 Q_{ξ} を $\sqrt{\sigma_{B}}$ で除したものである。また,図 - 5 a, 5 b 中の R_b は限界変形角である。本論 での耐震壁の破壊性状は,破壊モードを用い る。これは水平耐力以降,どれだけ変形可能か で規定される耐震性能の指標であり、以下の ように破壊モードを定義した。R_b < 1.0かつ側 柱が軸引張降伏しない場合をせん断破壊モー ド, R_b 1.0かつ側柱が引張降伏する場合を曲 げ・せん断破壊モード , R_b > 1.0 かつ側柱が軸 引張降伏する場合を曲げ破壊モードとした。 また, R_b は, 0.8_{ex} T_u の水平線と_{ex} T_u ・ | Rの包 絡線との交点の値とし,正側と負側載荷のR_b が異なる時には小さい値を採用する。いずれ の試験体とも、ほぼ計画した速度で載荷され たことが確認された。曲げ・せん断破壊モード 試験体の場合は,Rが0.1~0.2%で壁板に斜

図 - 5 a $Q_{\xi}/(tl_w\cdot\sqrt{\sigma_B})$ と層間変形角 Rの履歴曲線および実験終了時のひび割れ状況

めひび割れが発生し、その後の水平変位の増大 とともに開口横の壁板の斜めひび割れが拡幅し た。また、いずれの試験体ともRが0.6~0.7% で水平せん断耐力に達している。水平せん断耐 力に達した後、開口横の壁板がスリップ状せん 断破壊を起こし、水平せん断耐力が急激に低下 した。載荷速度が速くなると、水平せん断耐力 が上昇した。VRが0.014%/secのFS0試験体は 破壊モードの定義によれば、せん断破壊モード の履歴性状を、またVRが1.4%/secのFS0およ びFS1試験体は、曲げ・せん断破壊モードの履 歴性状を示した。せん断破壊モード試験体の場 合は,2~3サイクル目に壁板に斜めひび割れ が発生し,その後の水平変位の増大とともに開 口横の壁板の斜めひび割れが拡幅した。一方向 単調載荷の場合は,0.4~0.5%で水平せん断耐 力に達し,その後開口横壁板にスリップ状のせ ん断破壊が生じた。載荷速度が速くなると水平 せん断耐力が上昇した。繰返し載荷の場合で は,0.4%近傍で水平せん断耐力に達した。そ の後,水平せん断耐力近傍の荷重を保持するこ となく,急激な耐力低下を示す履歴曲線を示し

図 - 6 柱主筋のひずみ E_と壁板のひずみ測定位置およびひずみ E_」と時刻歴との関係の一例

た。載荷速度が速くなると水平せん断耐力は上 昇し,また,水平せん断耐力に達した時のRは 載荷速度の影響を受けることなくほぼ同じ値と なった。履歴パスの違いで比較すると,水平せ ん断耐力は一方向載荷の方が大きくなる傾向を 示した。水平せん断耐力に達した時のRは, 1.4%/sec の一方向載荷が若干大きくなること を除けば、ほぼ同じ値となった。破壊モード は,破壊モードの定義により,せん断破壊モー ドの履歴性状を示した。

図 - 7 には水平せん断耐力以降の耐力低下率 $Q_{\xi}/e_x Q_{\xi} \ge R$ および R_b の関係を示した。載荷速 度の違いでは顕著な違いはみられなかった。繰 返し載荷の方が一方向載荷より耐力の低下は大

FS0W5-0.28C-2.5-0.014 $Q_{\xi}/_{ex}Q$ S0W5-0.28C-2.5-1.4 S1W5-0.28C-2.5-0.014 S1W5-0.28C-2.5-1.4

> <u>R</u>(%) 2 -2 -1 0 曲げ・せん断破壊モード試験体

-3

きい結果となった。これは壁板の抵抗性能が繰 返しにより徐々に低下したためと考えられる。

3.2 耐力上昇率

表-3に実験および算定結果一覧を示す。

度 V_R との関係を示す。 $ex T_{uvh}/ex T_{uvl}$ は1.4%/secの 実験値を 0.014%/sec の実験値で除した値であ る。各試験体とも載荷速度を100倍にすると水 平せん断耐力の上昇がみられる。

素材である鉄筋とコンクリートはひずみ速度 の影響を受け,それらの強度が上昇する4)。し たがって 素材の強度上昇が構造体としての有 開口耐震壁の耐力に及ぼす影響は、素材の材料 強度に及ぼすひずみ速度の影響を考慮した強度

せん断破壊モード試験体

図 - 7 水平せん断耐力以降の耐力低下率 $O_{\xi}|_{ex}O_{\xi}$

3

									Experiment		Calculate
Specimens	exQu	ex T u	ex R u	0.8 ex t u	R _b	<u> </u>	ex R uvh	ex $ au$ uvh	Strain rate		Calculate
						ex R u	exRuvl	ex $ au$ uvl	$e_{ex} \boldsymbol{\varepsilon}_{w}$	$e_{ex} \boldsymbol{\varepsilon}_{s}$	$_{cal} lpha_{Qw}$
	(kN)		(%)		(%)				(mm/mm/sec)	(µ/sec)	$_{cal} \alpha_{QS}$
FS0W5-0.28C-2.5-0.014	288	0.132	0.6	0.1056	0.8	1.33	1.00	1.00	0.07×10^{-3}	49	1.00
ESOW5 0 28C 2 5 1 4	221	0.152	0.6	0 1216	0.0	1.50	1.00	1 15	4.77x10 ⁻³	6703	1.12 *1
1'50 W 5-0.28C-2.5-1.4	551	0.132	0.0	0.1210	0.9	1.50	1.00	1.15			1.16 *2
FS1W5-0.28C-2.5-0.014	292	0.117	0.6	0.0936	0.7	1.17	1.00	1.00	0.08×10^{-3}	65	1.00
FS1W5 0 28C 2 5 1 4	324	0 130	0.7	0.104	0.8	1 14	1 17	1 1 1	5 20 10-3	4254	1.09 *1
1'51 W 5-0.28C-2.5-1.4	524	0.130	0.7	0.104	0.8	1.14	1.17	1.11	5.20X10		1.16 *2
S0W5-0.28C-4.5-0.014	304	0.135	0.4	0.108	0.82	2.05	1.00	1.00	0.09×10^{-3}	45	1.00
SOW5 0 28C 4 5 1 4	277	0 1/2	0.5	0 1144	0.87	1.74	1.25	1.06	6.02×10^{-3}	4137	1.10 *1
50WJ-0.26C-4.J-1.4	322	0.143	0.5	0.1144	0.07	1.74	1.23	1.00			1.16 *2
S1W5-0.28C-4.5-0.014	298	0.131	0.4	0.1048	0.63	1.58	1.00	1.00	0.09×10^{-3}	51	1.00
S1W5 0 28C 4 5 1 4	217	0.120	0.4	0 1112	0.66	1 65	1.00	1.06	5.77x10 ⁻³	2672	1.10 *1
51 w 5-0.20C-4.5-1.4	517	0.139	0.4	0.1112	0.00	1.05	1.00	1.00		3073	1.16 *2

表-3 実験および算定結果一覧

 $e_x Q_{\xi}$:実験値の水平せん断耐力, $e_x \tau_u: e_x Q_{\xi}/(tl_w \cdot \sqrt{\mathbf{G}_s}), e_x R_u: 水平せん断耐力時のR, R_b:限界変形角$ $exR_{uvl}: 0.014\%$ /sec 時の exR_u , $exR_{uvh}: 1.4\%$ /sec 時の exR_u , $ex\tau_{uvl}: 0.014\%$ /sec 時の $ex\tau_u$, $ex\tau_{uvh}: 0.014\%$ /sec 時の $ex\tau_u$ $e_{x} \mathcal{E}_{w}$:壁板コンクリートのひずみ速度 $e_{x} \mathcal{E}_{s}$:鉄筋のひずみ速度 $e_{al} lpha_{Qw}, e_{al} lpha_{Qs}$:計算値の耐力上昇率 *1:鉄筋のひずみ速度による値,*2:壁板コンクリートのひずみ速度による値

図 - 9 $ex \tau_{uvh/ex} \tau_{uvl} \geq cal \alpha_{Qw}, cal \alpha_{Qs}$ との関係

上昇率算定式^{5),6)}により算定した。本論では,図 - 6に示す柱主筋および壁板コンクリートのひ ずみ \mathcal{E}_s , \mathcal{E}_w から水平せん断耐力近傍の柱主筋 と壁板コンクリートのひずみ速度 $e_x\mathcal{E}_s$, $e_x\mathcal{E}_w$ を 算定した。表 - 3に, $e_x\mathcal{E}_s \geq e_x\mathcal{E}_w$ を用いて求めた 耐力上昇率 $_{cal}\alpha_{Qs}$, $_{cal}\alpha_{Qw}$ を示す。図 - 9に,実 験値の耐力上昇率 $e_x\mathcal{T}_{uvh}/e_x\mathcal{T}_{uvl} \geq c_{cal}\alpha_{Qs}$, $_{cal}\alpha_{Qw} \geq$ の関係を示す。耐力上昇率算定値は,鉄筋のひ ずみ速度によるほうが壁板のひずみ速度よりも 図 - 8に示した実験値の耐力上昇率に近い値と なった。この結果は,本実験の破壊モードから 考えると,今後検討が必要である。

4. 結論

壁板の中央に開口を有する耐震壁について,載 荷速度,履歴パスおよび破壊モードを変化させ た実験を行った結果,以下のことがわかった。 1)水平せん断耐力は,載荷速度の影響を受け,

- 載荷速度が速くなると上昇する傾向がある。 繰返し載荷よりも一方向載荷のほうがその耐 力が大きくなる。
- 2) せん断余裕度が1.0 程度の破壊モードは,一 方向載荷の場合,載荷速度の影響を受け,せ

ん断破壊モードに移行する場合がある。

- 3) 水平せん断耐力以降の耐力低下は載荷速度 よりも履歴パスの影響のほうが大きい。
- 4)両破壊モード試験体とも,水平せん断耐力の 上昇は既往の材料強度上昇率の提案式で説明 できる。

謝辞

本研究は,平成14年度文部省科学研究費(基 盤研究C,課題番号12650590,研究代表;小野 正行)の助成を受けた。また,試験体製作およ び実験の実施にあたっては,九州共立大学技師 高田一俊,米原義則,青木治の各氏および平成 14年度九州共立大学工学部建築学科江崎研究 室,近畿大学九州工学部建築学科小野研究室の 卒論生および大学院生山口圭二氏の協力を得 た。ここに,関係者各位に感謝致します。

参考文献

- 江崎文也・小野正行・松岡良智・徳田俊宏: 一定載荷速度を受けるRC無開口耐震壁の履 歴性状その1,その2,日本建築学会九州支 部研究報告,第39号,pp.497-504,2000.3
- 2)日本建築防災協会:既存鉄筋コンクリート造 建築物の耐震診断基準・同解説,pp.11-12, 1992.8
- 3)日本建築学会:鉄筋コンクリート終局強度型 耐震設計指針・同解説,pp.122-135,1990.11
- 4)小谷俊介:鉄筋コンクリートにおける載荷速
 度の影響,コンクリート工学,Vol.21,No.11,
 pp.23-33,1983
- 5)藤本盛久ほか:地震動を受ける単-山形鋼筋 かいの高速引張実験,その1,日本建築学会 構造系論文報告集,第389号,pp.32-41, 1988.7
- 6)中村和行ほか:鉄筋コンクリート構造物の挙動における載荷速度の影響に関する研究,その1コンクリート材料の高速載荷実験,日本建築学会大会梗概集(関東),pp.787-789, 1997.9