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ABSTRACT: The application of the Lattice Equivalent Continuum Model was very successful 
so far in predicting the behavior of RC structures under monotonic and cyclic loading. New 
application of the model to the prestressed concrete components will be presented here
accompanied with the formulation for embedded curved prestressing tendon. Nonlinear FEM 
with multilayered shell element were adopted for the analysis. LECM is also capable for 
shear-transfer between crack surfaces, which is exceedingly important when adopting the shell 
element. Finally, the model was verified by series of prestressed beams with  satisfactory results. 
KEYWORDS: prestressed concrete, constitutive equation, Lattice Equivalent Continuum Model, 
prestressing formulation

1. INTRODUCTION

Lattice Equivalent Continuum Model [1], briefly called LECM, a constitutive equations of 
reinforced concrete for predicting behavior of the cracked concrete element. Basic concept of the
model is to replace concrete and reinforcement of the RC element by a system of lattices, in 
which each corresponding lattice possesses its own uniaxial properties. Stress components 
relation between global stress field and those of the lattice system is considered by using a 
concept of Micro-plane model. The model works with stress and strain vectors on a set of planes 
of various orientations, so called Micro-plane. Based on the micro-plane that changes its direction 
according to propagation direction of the crack, stress-strain relation of corresponding lattice 
component can be appropriately expressed. Consequently, complicated characteristics of the 
cracked reinforced concrete element can be simplified. Moreover, by applying uniaxial properties 
to each lattice component, nonlinear behavior material even the more complicated hysteretic rules 
(loading-unloading behavior) of concrete and reinforcement can be independently defined. In 
addition, not only concrete and reinforcement that were represented by the system of lattices, an 
extra lattice system is also introduced to represent the contribution from shear transfer
mechanism. This is one more feature of the model.

The application of the LECM is not limited to only reinforced concrete field. By introducing
the prestressing tendon formulation to the LECM, a good behavior prediction of the prestressed 
concrete component can also be obtained and this will be shown in the later section.

In this study, a general purpose finite element analysis program which is designed for 
research and educational use namely FEAPpv (acronym for A Finite Element Analysis Program: 
Personal Version), which is written by professor R.L. Taylor of the university of California, 
Berkeley, was adopted for all analyses. It provides many element types to the user for
implementing. However, using of mixed element type in the analysis is still difficult in linking 
degree of freedom of different elements. Accordingly, pure 3D multilayered shell element was 
adopted in all analyses.
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2. PRESTRESSING TENDON FORMULATION

Free body diagram of a segment of prestressing tendon passing an element is shown in 
Fig.1. Cross-sectional area of the tendon is pA with a tangential Young’s modulus of ptE . Both 
ends crossing the boundary of the element is defined by point P and Q, which are possessing a 
tangential vector of Pt and Qt , respectively. Two internal prestressing forces, namely PP  and 
QP , are acting at these two ends. Component of distributed force along the tangential direction is 
tp , normal component heading to the center of curvature is np . These two distributed 

components can be written in vector form as vector p . By using prestressing tendon axial 
strain-displacement relation, p pε = B a , the equilibrium equation based on virtual work concept
for prestressing tendon can be written as in eq.(1).

0
T T T T T
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where vector a denotes a set of nodal displacement of the corresponding element. 
Rewriting eq.(1) into more concise form, the equilibrium of prestressing tendon can be 

expressed in matrix form as in the following equation.

p p p+ =K a R P     (2)

where
T
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Γ
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Γ

= + −∫P N p N t N t , 0
T

p p p pA dsσ
Γ

= ∫R B (3)

In bonded tendon prestressing system, the axial strain-displacement relation matrix pB  can 
be obtained by transforming the parent strain field to the axial tendon strain with respected to the 
moving trihedral. The parent strain field is defined in ξηζ  coordinate system, which is 
equivalent to the strain field calculated from reinforced concrete element. The parent strain field 
is then transformed to moving trihedral system, tnb system, by using the transformation matrix, 
T , as T

tnb ξηζ′ =ε T ε T .
Strain component that is considered in the tendon is only the axial component, xε ′ , which is 

corresponding to the tangential component, t , of the moving trihedral. By removing the unwanted 
strain components, the tendon strain (axial strain) can be expressed as in the following equation.

pε { }x

T

η ζ ξη ξζ ηζε ε ε γ γ γ=C c=C ( )p t =  CB x a ( )p t= B a (4) 

where

( ) ( )p pt t =  B CB x (5) 

By a substitution of eq.(5) into eq.(3), stiffness matrix contributed by prestressing tendon 
for bonded problem can be obtained.

In the case of unbonded prestressing system, the pB matrix is more complicated than that
expressed by eq.(5). The total increment of concrete along the tendon length shall be equal to 
total elongation of the prestressing tendon, which can be mathematically expressed as

Fig. 1 Free body diagram of tendon segment

-770-



Unit: mm

7500

P P

40
6

2620 2620
7500

( )( )
0 0

1

i
nl l

c i p i p
i

ds t ds uε
=

 = = ∆  ∑∫ ∫ CB x a (6) 

where cε is concrete strain along tendon length, l is a total length of prestressing tendon, n is a 
total number of element that the prestressing tendon passing through, iB is strain-displacement 
matrix of parent element, and pu∆ is a total elongation of the prestressing tendon.

In the case of no friction is considered, tendon strain shall be the same through the length of 
the tendon, that is

pε
pu
l

∆
=

( )( )
0

1

1

1
1

i
n l

i p
i

n

p
i

t ds

J dt

=

−
=

 
  

=
∑ ∫

∑∫

CB x
a (7) 

 Stiffness matrix for unbonded system can also be calculated by using eq.(7). Nevertheless,
unlike the bonded case, integration limit should be done upon a total prestressing tendon length, 
in which the dimension of stiffness matrix is depending on the number of element that the 
prestressing tendon passing through. Assembling of the stiffness matrix is performed component 
by component to the global stiffness matrix according to the corresponding degree of freedom. 

3. NUMERICAL EXAMPLES   

3.1 CONTINUOUS PRESTRESSED CONCRETE BEAM
First analysis is a continuous prestressed concrete beam, which is tested by T.Y. Lin. [2].

Among the beam specimens of his test series, the designated beam B has been selected to verify 
the concrete constitutive model and finite element model proposed in this research, which is a
symmetric continuous prestressed concrete beam containing two equivalent span-lengths and is 
simply supported by three hinge supports, as shown in Fig. 2 (the figure is not in proportion). The 
beam cross-section is rectangular with the size of 203 406× mm. One prestressing tendon is 
placed in the curve line with eccentricity at the plus-moment and minus-moment zone. The beam 
is subjected to two point-loads at about one-third position in each span. 

Main reinforcing bar is located at four corners of the beam, having diameter of 14 mm. If 
letting the z-axis heads upward starting from the lower extreme fiber, location of the prestressing 
tendon will be described as: z = 203 mm at both ends, z = 155 mm at loading point, z = 300 mm at 
the middle support.

Full structure is modeled into finite element mesh using 240 5-layers shell elements. The 
curved prestressing tendon is interpolated by B-spline interpolation. The unbonded prestressing 
formulation is applied to the general finite element formulation. Mechanical properties used in 
the analysis are shown in Table 1.

Fig. 2 Continuous prestressed concrete beam geometry
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Fig. 3 Load-displacement diagram of PC beam

Vertical load P is monotonically increased. Load and 
corresponding vertical displacement at the load point relation 
is shown in Fig. 3. In addition, incremental force P∆  caused 
by prestressing force was deducted from the applied force in 
order to represent the vertical axis in Fig. 3 as an additional 
applied force only. The figure shows comparison between 
analysis result (solid line), experimental result (dotted line), 
and analysis result when no prestressing stress is applied 
(grayed solid line).

Both analysis results possess nearly the same initial slope 
as of the experiment. In the case of no prestressing stress, the 
load-displacement curve deviated from the experimental result 
when the applied load reached around 20 kN. When the 
prestressing stress is applied to the tendon with the value of 
1060.1 N/mm2, the analysis result is almost coincided the 
experimental result until the applied load has reached around 
140 kN. Some deviation can be seen when the applied load 
increased. However, the estimation of maximum strength is satisfactory obtained. 

Fig. 4 shows the deformation of 
the beam and crack pattern, only half 
of the beam is shown, at the point 
when the applied load reached its 
maximum value. The leftmost end, 
which the prestressing load directly 
applied, shows some cracks due to 
compression failure. Bending cracks 
occurred at the mid-span lower fiber 
and horizontal cracks at the mid-span 
upper fiber caused by confining 
effect, the force component normal 
to the tendon course, from 
prestressing tendon.

3.2 I-SHAPE PRESTRESSED CONCRETE BEAM
Series of prestressed beam that were studied in this subsection were built and tested by 

cooperating between Civil engineering laboratory, Ministry of Construction and Japan 
Prestressed Concrete Engineering Association [3].

Four internal-cable prestressed concrete beams with different geometric parameters see 
Table 2, have a common geometry as in the follows. The beam having a total length of 8000 mm
was simply supported with a span length of 7000 mm. Cross-section of the beam is a symmetric
I-shape with a full height of 1100 mm, flange width of 500 mm, flange thickness of 150 mm, and
web thickness of 150 mm. For the longitudinal reinforcement, four D22 bars and six D22 bars 
were used in upper-flange and lower-flange, respectively. Excluding beam S6 (beam without 
stirrup), D10 bars with a spacing of 200 mm were used as a stirrup. Fig. 5 shows the geometry 
and reinforcement detail for common beam (beam in the figure is an externally prestressed beam 
which is excluded from the analysis). 

Concrete

Young’s modulus 37,100 N/mm2

Compressive strength 38 N/mm2

Tensile strength 4.9 N/mm2

Cracking strain 0.002

Poisson ratio 0.0

Reinforcing steel

Young’s modulus 198,800 N/mm2

Yielding stress 318.5 N/mm2

Prestressing tendon

Cross-sectional area 621.3 mm2

Young’s modulus 202,222 N/mm2

Prestressing stress 1060.1 N/mm2

Table 1 Mechanical properties 
of prestressed concrete beam

Fig. 4 Deformation and crack pattern of the prestressed beam
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Four prestressing cables installed in each beam are 1S21.8 (SWPR7AL) type with an 
initial prestressing stress of 850 N/mm2 (excluding S7 beam, no prestressing stress is applied). 

PC cable Cable angle Stirrup Prestressing
Specimen

internal external 0o 5o standard none PC RC

S2 X X X X
S4 X X X X
S6 X X X X
S7 X X X X

Two points monotonic vertical load was equally applied at the 500 mm position away from 
midspan. Concrete and reinforcement properties used in the experiment and analysis are listed in 
Table 3. 

Concrete
Specimen Compressive strength (N/mm2) Tensile strength (N/mm2) Young’s modulus (N/mm2)

S2 46.7 4.091 31,090
S4 44.0 3.799 28,650
S6 57.5 4.186 30,090
S7 53.4 4.097 28,770

Reinforcement and prestressing tendon (same for all specimens)
Reinforcement Yielding stress (N/mm2) Tensile strength (N/mm2) Young’s modulus (N/mm2)

D22 382 542 188,100
D10 360 560 188,100

1S21.8 1692 1801 217,000

Half model of all beam specimens were analyzed by using the procedures proposed in 
previous sections. Applied load and vertical deflection at the mid-span relations are shown in Fig 
6 and Fig 7. Beam S2 and S4 are different by prestressing cable angle, and it does not affect 
much to the ultimate strength of the beams. Beam S2 reached the ultimate strength at 1850 kN
when deflection is 55.4 mm, and beam S4 at 1812 kN when deflection is 51.6 mm. These two 
beams are failed by shear failure. The analysis results are represented by solid line. Initial 
stiffness from the analysis of both beams are very close to that of the experiment until applied 
load reached about 600 kN. After the first occurrence of bending cracks (~600 kN), longitudinal 
reinforcement and prestressing tendon stiffness contributed stiffness of the whole structure. In the 
analysis, the result is a bit stiffer than that of the experiment after the first deviation. The 
load-deflection curve deviates again when applied load reached about 1350 kN (reinforcement in 
tension zone is about to yield). Beam specimen S2 and S4 are suddenly failed by shear failure 

Table 2 List of prestressed concrete beam specimens

Fig. 5 Geometry and reinforcement detail of beam specimens

Unit: mm

Table 3 Mechanical properties of prestressed concrete beams
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when mid-span deflection is 67 mm and 51 mm, respectively. In the analysis, both beams are also 
suddenly failed by shear when mid-span deflection is 60.864 mm and 53.772 mm. 

Beam S6 (no stirrup) analysis result, as shown in Fig. 7, is relatively well predicted until 
the applied load reaches about 900 kN. With addition of the vertical load, beam from the analysis 
result suddenly failed by shear failure when deflection is 6.9 mm, while beam specimen continues 
to resist the load and failed at about 1200 kN when deflection is 14.6 mm.

Beam S7 (no prestressing load) has ultimate strength of about 1400 kN while it strength 
can be increased to 1850 kN when prestressing load is applied. Stiffness of the beam decreased 
when first bending crack occurred (225 kN) and decrease furthermore when shear cracks 
appeared (349 kN). The analysis result is moderately stiffer after the first deviation. An ultimate 
strength of the beam specimen is reached when applied load is about 1418 kN when deflection is 
61 mm and failed when deflection is 77.5 mm. The ultimate strength can be well predicted by the 
analysis, 1430 kN, with the deflection at failure equal to 68.76 mm.

4. CONCLUSIONS

By introducing of the prestressed concrete formulation accompanied with the reinforced 
concrete formulation (LECM) to the nonlinear FEM, behavior of the prestressed concrete 
component can be well predicted. However, the correctness of the analysis is also depending on 
modeling and discretization of the structure. Further development shall be carried out in order to 
study the more complicated prestressed concrete structural components.
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Fig. 6 Load-displacement relations (S2, S4) Fig. 7 Load-displacement relations (S6, S7)
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