論文 鉄筋腐食を考慮した RC はり部材のせん断耐荷性能評価

橋本 航*1·森川 英典*2·小林 秀惠*3

要旨:塩害や中性化による鉄筋の腐食が,RCはり部材のせん断耐荷性能に及ぼす影響 について評価するため、模擬腐食鉄筋を用いてRCはり部材を作製し、載荷試験を実施 することで実験的検討を行った。その結果、主鉄筋の腐食状況が、部材のせん断耐荷 性能および耐荷機構に影響を及ぼすことが明らかとなった。また、鉄筋腐食を導入し たRCはり部材の有限要素法解析を行い、実験結果と比較することで、本解析手法の精 度検証を行った。

キーワード:鉄筋腐食, RC はり部材, アーチ作用, せん断耐荷機構, 有限要素法解析

1. はじめに

コンクリートの塩害や中性化などが原因で, 鉄筋の腐食が進行した RC 構造物が増加してい ることから,鉄筋の腐食状況と構造物のせん断 耐荷性能との関係を把握する必要性が指摘さ れている¹⁾。本研究では,図-1に示す模擬腐食 鉄筋を用いて RC はり部材を作製し,載荷試験 を行うことで,鉄筋の腐食が部材のせん断耐荷 性能および耐荷機構に及ぼす影響について評 価を行った²⁾。また,実験で使用した RC はり部 材に対して有限要素法解析を実施し,実験結果 と比較することで,本解析手法の精度検証を行 った。

図-1 模擬腐食鉄筋の概要

2. 実験概要

2.1 試験供試体

本試験で使用した供試体は,幅 150mm,高さ 240mm,有効高さ 200mm の長方形断面を持つス パン 1200mm の RC はりである。主鉄筋には D16 を 3 本,圧縮鉄筋に D13 を 2 本配置した。配筋

*1	京都市 工修	(正会員)	
* 2	神戸大学助教授	工学部建設学科	工博(正会員)
* 3	神戸大学技術官	工学部建設学科	(正会員)

SではスターラップにD6を150mm間隔で配置し, 配筋Tではスターラップをせん断スパン内に配 置しない配筋とした。載荷方法は,単純支持さ れた供試体に対して,鋼製円柱による線荷重を 与えた。せん断スパン比は2.5とし,中央2点 載荷により試験を行った。供試体の側面図と断 面図および載荷試験方法を図-2に示す。

2.2 腐食鉄筋の性質

本試験では,主鉄筋(D16)とスターラップ (D6)に使用する鉄筋を切削し,テープを貼るこ とで人工的に鉄筋の腐食を表現した³⁾。主鉄筋 はスパン中央から500mmの位置までを一様に切 削し,スターラップは圧縮鉄筋の下面から主鉄 筋の上面までを一様に切削した。テープには, その厚さが無視できるガムテープを使用した。 切削量やテープ幅に関しては,後述する引張試 験および付着試験により決定した。鉄筋の腐食 程度を示す指標としては,式(1)に示す腐食減 量率を用いた⁴⁾。**表-1**に健全時における鉄筋の 特性値を示す。

表-1 鉄筋の特性値(健全時)

鉄筋	降伏点強度(N/mm ²)	引張強度(N/mm ²)
D6	323.7	487.8
D13	303.6	436.1
D16	337.0	498.6

(1) 腐食鉄筋の断面特性

腐食減量率と重量減少率との関係を求める ため、重量減少率の異なる数パターンの鉄筋に 対して引張試験を行い、降伏強度を測定するこ とで、鉄筋の腐食減量率を式(1)を用いて算定 した。図-3に得られた腐食減量率と重量減量率 との関係を示す。

(2) 腐食鉄筋の付着特性

各腐食減量率に対する付着強度比を求める ため、鉄筋とコンクリートの付着強度試験を行 った。本研究では、土木学会規準による引抜き 試験方法を用い、一辺が100mmである立法体の 供試体に対して、付着断絶率を40%、60%、80% の3水準を設定し試験を行った。試験結果から 得られた付着断絶率と付着強度比との関係を 図-4に示す。ここで、付着断絶率とは、健全時 における鉄筋の周長に対して貼るテープ幅の 割合を示す。

実験結果および考察

表-2 に供試体の詳細と実験結果を示す。スタ ーラップの腐食減量率は0%,10%,20%,主鉄筋 の腐食減量率は0%,5%,10%のそれぞれ3水準 とし,各腐食減量率に対する重量減少率と付着 強度比の値は図-3,図-4を基に決定した。なお, 各腐食減量率に対する目標付着強度比(対健

全)は以下に示す式(2)を用いて算定した⁵⁾。

付着強度比=

 $\exp(-1.22\Delta w) + \exp(-0.06\Delta w) - \exp(-2.82\Delta w)$ (2)

図-3 腐食減量率と重量減量率の関係

	コンクリート スターラップ					主鉄筋			実験値			実験値/				
供試体名	強度	腐食	重量	量 付着強度比 席		腐食	重量	付着強度比		付着強度比		(kN)			示方書評価値	
	(N/mm^2)	減量率(%)	減量率(%)	目標	実験値	減量率(%)	減量率(%)	目標	実験値	Vc	Vc'	Vy	Vc	Vy		
S0-B0-S	16.9	0.0	0.0	1.00	1.00	0.0	0.0	1.00	1.00	29.4		52.8	1.02	1.00		
S10-B0-S	16.9	10.0	19.2	0.53	0.31	0.0	0.0	1.00	1.00	35.5		50.9	1.23	1.06		
S20-B0-S	16.9	20.0	38.5	0.28	0.15	0.0	0.0	1.00	1.00	33.1		48.0	1.14	1.11		
S10-B5-S	16.9	10.0	19.2	0.53	0.31	5.0	15.5	0.73	0.52	28.2	9.3	56.6	1.03	1.22		
S20-B10-S	16.9	20.0	38.5	0.28	0.15	10.0	24.7	0.53	0.33	25.7	13.7	53.8	0.98	1.32		
S0-B0-T	16.5	0.0	_		—	0.0	0.0	1.00	1.00	31.9	4.7	_	1.10			
S0-B5-T	16.5	0.0	_		_	5.0	15.5	0.73	0.66	28.2	16.3	_	1.03			
S0-B10-T	16.5	0.0	_	_	_	10.0	24.7	0.53	0.44	27.0	8.5	_	1.02	_		
実験値Vc・斜めびび割れ発生荷重 実験値Vy・スターラップ降伏荷重																

表-2 載荷試験結果と評価値との比較

実験值Vc':耐力增分

実験値Vs=評価値Vs(トラス理論)

本試験結果は、比較的精度の高かったコンク リート標準示方書によるせん断耐力評価式を 用いて検討を行った⁶⁾。

表-2より主鉄筋が健全状態であれば,示方書 による評価値 Vy は,ある程度の精度が得られ ていると言え,概ねトラス理論によるせん断抵 抗が有効な範囲内で,せん断破壊に至ったと考 えられる。一方,主鉄筋の腐食が進行すると, 実験値 Vy は,評価値 Vy を大きく上回っている。 これは腐食の進行に伴い,主鉄筋とコンクリー トの付着力が低下したため,せん断抵抗機構が 一部アーチ作用へと移行し,その結果,せん断 耐力が評価値よりも大幅に増加したものと考 えられる。表-2 に示す Vc'は主鉄筋腐食によ る耐力増加値を示している。(Vc'=Vy-Vs-Vc)

次に、終局時における主鉄筋ひずみの分布を 主鉄筋の状態別に図-5 に示す。図-5 から主鉄 筋の状態によって主鉄筋ひずみ分布の形状が 大きく異なっていることが分かる。主鉄筋が健 全状態であれば、中央でひずみ値が最大となり、 中央から離れるにつれて、ひずみ値は減少する 傾向にあるが、主鉄筋が腐食すると、中央のひ ずみ値よりも、中央から 200mm あるいは 400mm の位置でひずみ値が最大となっていることが 分かる。このように主鉄筋の状態によって、ひ ずみ分布の形状に明確な差が生じていること から、主鉄筋の腐食が進行すると、せん断抵抗 機構が健全時と異なってくると考えられ、その せん断抵抗機構の変化が、部材のせん断耐力に 影響を及ぼしたと推察される。

(a) 主鉄筋:健全状態

(b) 主鉄筋:腐食状態図-5 主鉄筋のひずみ分布(終局時)

図-6にS0-B0-S供試体とS20-B10-S供試体の 終局時におけるひび割れ状況について示す。図 -6から鉄筋の腐食が進行すると、ひび割れ分散 性が減少し、ひび割れが局所化する傾向にある と言える。また、S20-B10-S供試体においては、 曲げひび割れがS0-B0-S供試体よりも伸展して いることから、鉄筋の腐食が曲げひび割れの成 長程度にも影響を及ぼしていることが分かる。

4. 解析の概要

図-7に解析モデルを示す。解析モデルは、実 験供試体と同様で,幅 150mm,有効高さ 200mm の長方形断面を持ち, 主鉄筋に D16 を 3本, 圧 縮鉄筋に D13 を 2本, スターラップには D6 を 150mm 間隔で配置している。せん断スパン比は 2.5 であり、解析モデルは左右対称形のため、 片側のみについてモデル化し、スパン中央断面 をはり軸方向に拘束した。コンクリートを平面 応力要素,鉄筋を線要素とし、コンクリート要 素と主鉄筋要素の接触節点において付着を考 慮したバネ要素を導入した。コンクリート要素 の応力-ひずみ関係は、材料試験を基に、 圧縮 ひずみ1000μまでを弾性範囲,1000μから2500 μまでを塑性範囲とし,3500μで圧縮破壊する とした。また、引張側に関しては、引張限界ひ ずみまでは弾性範囲とし, 引張限界ひずみに達 するとひび割れが発生するとした。ここで、コ ンクリートのせん断挙動を解析する場合,引張 によって発生したひび割れ後の挙動が最も重 要となることから,引張ひび割れ発生後,引張 ひずみが増加していくにつれて徐々に引張応 力が低下していく引張軟化モデルを考慮した。 本解析における引張応力は, ひび割れ発生後, 図-8に示すような応力-ひずみ関係となるよう にモデル化した。なお、破壊エネルギー G_f は 式(3)を用いた 7)。鉄筋要素に関しては, 完全 弾塑性としてモデル化した。また,腐食鉄筋の 降伏強度は式(1)を用いて算出し、弾性係数に ついては式(4)を用いて決定した 4)。バネ要素 は, 垂直方向および水平方向を完全弾性型でモ デル化を行い,バネ定数は前述した付着強度試 験の結果を基に決定を行った。なお、本解析で は固定ひび割れモデルを用い,ひび割れ発生後, コンクリートのせん断弾性係数を健全時の 0.3 倍とした。

$$G_{f} = 10 (d_{\max})^{1/3} \cdot f_{c}^{+1/3}$$
 (3)
 $d_{\max} : 粗骨材の最大寸法 (mm)$
 $f_{c}^{-} : コンクリートの圧縮強度 (N/mm2)$

 $E_{cs} = \{1-1.13(\Delta w/100)\} \cdot E_{ss}$ (4) $\Delta w : 腐食減量率(\%)$ $E_{cs} : 腐食後の弾性係数(N/mm²)$ $E_{ss} : 健全時の弾性係数(N/mm²)$

5. 解析結果および考察

表-3 に耐力の解析結果と実験結果を示す。本 解析においては実験結果同様,全ての供試体が 斜め引張破壊で終局した。表-3 から,配筋 S 供 試体の解析値は実験値 Vy と V(Max)間の値とな っており,供試体の耐力としては,概ね良好な 値が得られたと言える。しかしながら,実験で アーチ作用の影響が強く出たと考えられる S0-B5-T 供試体の耐力に関しては,本解析では 実験結果を追随することができず,解析値と実 験値に比較的大きな差が生じる結果となった。

次に, 図-9 にスターラップひずみ挙動の解析 結果と実験結果の比較を示す。図-9では、供試 体のせん断耐力に最も影響を及ぼすと考えら れるせん断スパン中央のスターラップ挙動に ついて着目し解析値と実験値の比較を行った。 図-9(a)(b)(c)より, 主鉄筋が健全状態である 供試体のスターラップひずみ挙動に関しては, スターラップがせん断力を分担し始める荷重, およびその後のひずみ挙動を解析値は実験値 を精度良く追随していると言える。一方、図 -9(d)(e)から, 主鉄筋が腐食した供試体のスタ ーラップひずみ挙動は,終局段階においては, 解析値は実験値を精度良く追随していると言 えるが、荷重の初期段階では大きな差が生じて いる。主鉄筋が腐食した場合、実験においては 初期荷重の段階からスターラップひずみが伸 び始めており、その傾向は腐食の進行に伴って 顕著に表れている。すなわち健全供試体では, ある荷重段階において斜めひび割れが一気に 形成され、それと同時にスターラップひずみが 飛躍的に伸び始めるのに対し、鉄筋の腐食が進 行した供試体では、載荷後まもなくスターラッ プひずみが徐々に伸展していることから,荷重 初期の段階で微細な斜めひび割れが形成され 始めていたことが推察される。本試験では目視 により、その微細な斜めひび割れを確認するこ とはできなかったが, 図-9(d) (e) に示したスタ ーラップひずみ挙動から判断して, 目視により 確認できた荷重段階よりも早期に、斜めひび割 れが形成され始めていた可能性が極めて高い ことが伺える。

供封休夕	実験	値(kN)	解析值	(実験値)/(解析値)			
厌സ仲石	Vy	V(Max)	V(kN)	Vy/V	V(Max)/V		
S0-B0-S	52.8	68.6	68.1	0.78	1.01		
S10-B0-S	50.9	61.2	58.8	0.87	1.04		
S20-B0-S	48.0	60.6	55.1	0.87	1.10		
S10-B5-S	56.6	60.1	60.3	0.94	1.00		
S20-B10-S	53.8	57.8	57.6	0.93	1.00		
S0-B0-T		36.6	33.1		1.11		
S0-B5-T	_	44.5	36.0	_	1.24		
S0-B10-T	_	35.5	34.1	_	1.04		

表-3 解析結果と実験結果の比較(耐力)

実験値Vy:スターラップ降伏荷重 実験値V(Max):最大荷重

(b)S10-B0-S 供試体

(d) S10-B5-S 供試体

6. まとめ

以下に本研究で得られた知見についてまと める。

(1)載荷試験の結果から,主鉄筋が健全状態で あれば,概ねトラス理論によるせん断抵抗が有 効な範囲内で破壊に至るが,主鉄筋の腐食が進 行すると,せん断抵抗機構が一部アーチ作用へ と移行し,せん断耐力が上昇する傾向にあるこ とが示された。

(2) 主鉄筋の状態によって終局時におけるひず み分布の形状が異なることから,主鉄筋が腐食 すると,健全状態とは異なるせん断抵抗機構に 移行する可能性が高いことが推察される。

(3) スターラップひずみの挙動を比較した結果, 鉄筋の腐食が進行した供試体では,荷重初期の 段階から微細な斜めひび割れが形成され始め る可能性が示された。

(4)終局時におけるひび割れ性状から,鉄筋の 腐食が進行すると,ひび割れ分散性が低下し, ひび割れが局所化する傾向にあることが分か った。

(5)本解析手法は,主鉄筋が健全状態である供 試体の実験結果とは,比較的良好な精度が得ら れたが,主鉄筋が腐食した供試体の実験結果は 精度良く追随することができなかった。

謝辞

実験を行うにあたり,多大な協力を頂きまし た神戸大学工学部(現:京都市)の岩田和隆氏に 深く御礼申し上げます。

参考文献

 1)佐藤吉孝、山本貴士、服部篤史、宮川豊章:RC 部材中におけるせん断補強筋の腐食がせん断 耐荷特性に与える影響、土木学会年次学術講演 会、V-137、pp.273-274、2002.9

2)岩田和隆,森川英典,橋本航,小林秀惠:鉄 筋腐食による RC 部材のせん断耐荷性能評価と 地震時損傷確率,土木学会関西支部年次学術講 演会, V-10, 2002.5

3) 森田祐介, 森川英典, 小林秀惠: 季節変動条 件を考慮した RC 部材の鉄筋腐食進行モデルと 評点法による性能評価手法, 第 24 回コンクリ ート工学年次論文報告集, No. 2, pp. 1519-1524, 2002.6

4)李翰承,友澤史紀,野口貴文,鹿毛忠継:有 限要素法による鉄筋の腐食した RC 梁の耐力性 能評価,第 19 回コンクリート工学年次論文報 告集, No. 1, pp. 1147-1152, 1997.6

5) 日本コンクリート工学協会:コンクリート構造物の構造・耐久設計境界問題研究委員会報告書, 1998.7

6) 土木学会:コンクリート標準示方書[設計編], pp. 58-72, 1996

7) 土木学会:コンクリート標準示方書[構造性 能照査編], pp. 27-28, 2002