論文 硬化型復元力特性をもつエネルギー吸収デバイスを設置した RC 造建物 の地震応答性状

康 在完*1·堀 則男*2·井上 範夫*3·川股 重也*4

要旨: RC 造建物にエネルギー吸収デバイス(粘弾性ダンパー)を設置して,地震応答を軽減 させると共に,過大な変形を制御するリミッターを併設した硬化型復元力特性をもつ損傷制 御型システムの地震応答性状について検討した。その結果,中小地震に対してはダンパーに よって建物の応答を低減し,大地震に対しては,リミッターにより変形を制御できることが 確認された。

キーワード:粘弾性ダンパー,リミッター,硬化型復元力特性,地震応答性状

1. はじめに

筆者らは、より効率的で普及が容易な制振シ ステムの開発を目指した研究を行っており、こ れまでに、パッシブな制振装置として粘弾性ダ ンパー等を建物内に設置してエネルギー吸収を 行い、主構造体の損傷を軽減させる研究を行っ てきた¹⁾。ここで用いる粘弾性ダンパーは変形 の小さいレベルで最大速度が生じ大きな減衰力 を期待することが出来るので、剛性の大きな鉄 筋コンクリート造建物にも適用可能である。本 報では、さらにこれらの装置に変形を制御する リミッターを併設して、硬化型復元力特性をも つシステムを考案し、鉄筋コンクリート造建物 に適応した場合の有効性を検討した。

従来の設計法では,部材の降伏による吸収エ ネルギーで地震からの入力エネルギーを消費す る考え方に基づき,部材の降伏,特に梁降伏型 の崩壊機構による設計が一般的に行われている。 しかし,巨大な海洋型地震などが到来し,地震 動の後半に長周期成分が多く含まれている地震 波が入力される場合,建物は共振を避けられず 大きな変形が生じ過大な損傷を負うことになる と思われる。これに対して,本システムでは, ある変形を超えればリミッターが作動して剛性 が高くなり,損傷の拡大を防ぐことが可能とな る。ただし,剛性が高くなると応答加速度,ひ いては応答せん断力が大きくなるので,剛性の 上昇する程度やその変形レベル,入力地震動の 特性との関係を十分検討する必要がある。

本研究では、中小地震に対してはダンパーの エネルギー吸収により応答を低減し、大地震に 対しては、エネルギー吸収に加えてリミッター の変形制御により建物の損傷の拡大を防ぐこと を目指す本システムの有効性を明らかにするこ とを目的とする。

2. 解析モデル

2.1 建物モデル

検討対象建物を図-1に示す。これは、純ラ ーメンとして設計された4層モデル建物²⁾の2 階から4階部分は剛体と仮定してピロティ型建 物に変更したものである。この建物の全質量と 1階部分の復元力特性によって1質点系にモデ ル化したものを、解析に用いる建物モデルとす る。図-2と表-1に1質点系建物モデルの復 元力特性を示す。

*1 東北大学大学院 工学研究科 都市・建築学専攻 工修 (正会員) *2 東北大学大学院助手 工学研究科 都市・建築学専攻 工博 (正会員) *3 東北大学大学院教授 工学研究科 都市・建築学専攻 工博 (正会員) *4 東北工業大学大学院客員教授 工学研究科 建築学専攻 工博

図-2 1質点系建物モデルの復元力

表-1 1質点系建物モデルの復元力

質量 (t)	K ₀ (kN/m)	Qc (kN)	Qy (kN)	Су
1525	630140	2420.6	6076.0	0.41

(ここで, Cy は降伏ベースシア係数)

2.2 支持部材

粘弾性ダンパーを建物に取り付ける方式はさ まざまであるが,ここでは鉄骨ブレースを介し て設置する方式をとる。

図-3 支持部材取り付け方式

支持部材として用いた鉄骨ブレースを建物に 固定して耐震補強材として使う場合の水平剛性 (K_B) および水平力に対するせん断降伏耐力 (Q_Y) は \mathbf{Z} -3のように部材断面,配置を仮定 して H 鋼 2 本を 1set として計算すると, $K_B=305627kN/m$, $Q_Y=2643kN$ である。ただし, ここで用いる支持部材は座屈止めによって座屈 はしないものと仮定しており, Q_Y は H 鋼の圧 縮・引張降伏強度で決まっている。

本研究では、このような鉄骨ブレースを図-1(a)に示すように建物に 4set 設置することに する。また、これらの鉄骨ブレースは、最初か ら建物に固定して耐震補強材として使う場合と 粘弾性ダンパーの支持部材として使う場合に分 けてそれぞれの応答を調べることにする。

2.3 粘弾性ダンパー

本報で用いる粘弾性ダンパーは、微小な変形 時から機能を発揮すると共に、安定した楕円形 の履歴ループを描くアクリル系粘弾性材料を対 象とする。図-4に粘弾性ダンパーの基本構造 を、図-5に履歴挙動を示す。

図-5 粘弾性ダンパー履歴挙動(定常応答時)

粘弾性ダンパーは互いに平行な2枚の板の相 対的な平行移動に伴う粘弾性体のせん断変形に より履歴面積を伴う抵抗力を発揮して振動エネ ルギーを吸収する。粘弾性ダンパーの力学的特 性(剛性,減衰)は振動数に依存して変化する 特徴があるため,2 要素のばねーダッシュポッ トモデルでは振動数依存性を適切に表現するこ とが困難である。ここでは、粘弾性ダンパーの 抵抗モデルとして図-6に示すような、 Maxwell流体モデルとKelvin固体モデルを並列 に結合した4要素モデルを用いる¹⁾。本報で用 いる建物モデルに組み込んだ場合に、初期剛性 に対する建物の粘性減衰定数が5%程度増加す るような粘弾性体の量として表-2の値を設定 し³⁾、これに対して算定したモデルのパラメー タの値を図-6に示している。

K_K=2352.0kN/m
C_K=628.5kNs/m
K_M=20966.7kN/m

・C_M=2125.5kNs/m (設定温度:20℃)

図-6 ダンパーの抵抗モデル(1set)

表-2 粘弾性体の量(1set)

せん断面積	せん断厚さ	層数	許容せん断
(mm ²)	(mm)		ひずみ(%)
150000	15	6	300

これらのパラメータを用いた微小変形時の定 常応答を図-7に示す。

2.4 クッション材

本報で用いる制振システムは、中小地震時の ような変形が小さいレベルでは、粘弾性ダンパ ーによって応答を低減させ、大地震時に降伏す るような大きい変形レベルになると、支持部材 として用いた鉄骨ブレースがリミッターと接触 し、最初から建物に固定して耐震補強材として 使う場合と同様な働きをする。接触時の衝撃を 緩和するためには**写真-1**に示すようなゴム製 のクッション材を用いる。また,クッション材 の圧縮実験結果を**図-8**に示す。

実験結果により、クッション材の荷重履歴に は1Hz~3Hz まではそれほど振動数の影響はな いことが分かった。解析で用いるためのクッシ ョン材の履歴モデルを図-9に示す。

図-9の結果はクッション材の受圧面積が 50mm×50mmであるが,以後の検討では,建物 に付けることを考慮して受圧面積を5倍と仮定 した。

3. 解析条件

3.1 入力地震動

入力地震動は告示で規定された設計用応答ス

ペクトルに対応して作成した模擬地震動を用いた。入力レベルは極めて稀におこる地震動とし、地盤は第二種地盤と仮定し、告示に示す地盤増幅を考慮した。位相特性は一様乱数とし、時刻歴包絡関数は、図-10に示すような Jennings型を用いた。ここで、主要動が8秒の模擬地震動を長波、3秒のものを短波と呼ぶことにする。

これらの設定によって得られた模擬地震動の 時刻歴波形を図-11に,加速度応答スペクトル を図-12に示す。

3.2 解析用建物モデル

解析用の建物モデルは,

- (A) 建物のみ(弾性周期: 0.31s)
- (B) 建物に支持部材を固定(弾性周期:0.18s)
- (C) 建物に支持部材を介してダンパー設置
- (D) C-Type にさらにリミッターを設置の4種類を対象とする。建物モデルの一例とし
- て,図-13に(D)モデルを示す。

図-13 解析用建物モデル

ここで、運動方程式は次のようになる。

$$m\ddot{x} + c_f \dot{x} + k_f x = -m\ddot{x}_0 - P \tag{1}$$

ここで,P は粘弾性ダンパーの抵抗力を表わ しており,現ステップの減衰項および前ステッ プの応答値より計算される残りの項を補正力と して考慮することが特徴である^{4),5)}。

なお、支持部材、ダンパー、およびリミッタ ーのパラメータはそれぞれの4set分を設定値と して使う。リミッターが作動する変形の大きさ (Gap)は、建物の塑性率が1(層間変形:28.3mm) の時にリミッターが作動するような変形 (23.4mm)を用いた。また、支持部材は過大な応 答となっても降伏させず弾性のままと仮定した。

4. 応答結果の検討

作成した模擬地震動2種類を入力波として時 刻歴応答解析を行った。まず、中地震として入 力波を 50%として行った結果を図-14の(a)~

建物のみの場合は長波,短波共に塑性率約3 まで変形が進んでいる。これに対して,建物に ダンパーを設置した場合には,減衰が付加され

るため建物の層間変形は 20mm 程度で降伏せず, 支持部材も降伏しない。一方,建物に支持部材 を固定した場合は減衰が小さく剛性が高いため, 建物の層間変形は 10mm と小さくなっているも のの慣性力がダンパーを組み込んだ時より 2 倍 以上増加しており,実際は支持部材が降伏して しまう。

次に、大地震として入力波を 100%にした結 果を図-15の(a)~(c)に示す。

建物にダンパーのみを設置した場合は、ダン パーによる減衰増加で応答は低減されたが、長 波,短波共に変形が進み、特に、短波の場合は変 形が片側に流れ建物に塑性率3ぐらいの大変形 が生じ、残留変形が8mmである。また、粘弾 性体のひずみは最大479%となり、許容値を越 えている。一方、建物にダンパーおよびリミッ ターを設置した場合は慣性力の絶対値は増えた ものの塑性率が長波、短波共に約2までに低減 され、片流れがなくなり粘弾性体のひずみは 276%で許容値以内であり、支持部材も降伏しな いことが確認された。これに対して、建物に支 持部材を固定し、さらに、支持部材が弾性範囲 として仮定した場合は、リミッターを設置した 場合に比べると2倍以上の非常に大きい慣性力 が生じ,実際には支持部材が早期に降伏して大 きな変形が生じると思われる。

5. まとめ

本報では、新たな制振システムとして提案し た硬化型復元力特性をもつエネルギー吸収デバ イスを設置した RC 造建物の地震応答性状を明 らかにするため、模擬地震動を用いた時刻歴応 答解析を行い、その特性や有効性の検討を行っ た。以下に、結論を述べる。

(1)中地震に対する応答

RC 造建物に粘弾性ダンパーを組み込むこと により,減衰が増大して建物の応答が低減され た。それに対して,最初から支持部材を固定し た一般的な耐震補強では減衰が小さく剛性が高 いため,非常に大きい慣性力が生じ,また,支 持部材が降伏してしまうことが確認された。 (2)大地震に対する応答

RC 造建物に粘弾性ダンパーのみを設置した 場合は,建物が塑性率3 ぐらいの大変形が生じ, 残留変形も大きかった。また,粘弾性ダンパー は許容ひずみをこえる大変形が生じた。それに 対して,リミッターを設置した場合は慣性力の 絶対値は増えるものの塑性率が約2までに低減 され,粘弾性体のひずみは許容範囲で収まり, また,支持部材も降伏しないことが確認された。

参考文献

- 康在完,船木尚己,川股重也:乱流ダンパーを用いた実大制振試験建屋の振動応答解析,構造工学 論文集, Vol. 48B, pp. 531~536, 2002.3
- 国土交通省建築研究所、(財)日本建築センター:日 米共同構造実験研究「高知能建築構造システムの 開発」平成12年報告書、2001.3
- 3) 笠井和彦, 寺本道彦, 大熊潔, 所健: 粘弾性体の温度・振動数・振幅依存を考慮した構成則(その1)線形領域における温度・振動数依存のモデル化, 日本建築学会構造系論文集, No.543, pp.77~86, 2001.5
- 4) 高橋雄司,曽田五月也:一般化マックスウェルモデ ルにより模擬される粘弾性ダンパーを有する構造 物の応答解析方法,日本建築学会構造系論文集, No.511,pp.85~91,1998.9
- 5) 畑田朋彦,小堀鐸二,石田雅利,丹羽直幹:Maxwell 型モデルを含む振動系の応答解析法 (その1)定 式化と数値シミュレーション,日本建築学会大会 学術講演梗概集 B, pp. 645~646, 1994.9