論文 軸方向鉄筋の抜出しを考慮した格子モデル解析による RC 橋脚の 非線形履歴挙動の予測

三木 朋広^{*1}·二羽 淳一郎^{*2}

要旨:繰返し水平力を受ける RC 橋脚の塑性変形挙動を把握することを目的として,静的格 子モデル解析による検討を試みた。静的格子モデルは,対象部材を適切な材料モデルを組み 込んだトラス要素に離散化することで,せん断耐荷機構を明確に評価できる簡便な解析モデ ルである。また,軸方向鉄筋の抜出し挙動を,橋脚-フーチング間に鉄筋ひずみ-すべり関 係を組み込んだ接合要素によって再現した。RC 橋脚を対象とした,水平一方向静的正負交番 載荷実験の結果と解析結果を比較した結果,鉄筋の抜出しを考慮することによって,履歴特 性のうち除荷剛性,およびエネルギー吸収性能に関して予測精度が向上することを確認した。 キーワード:軸方向鉄筋,抜出し,RC 橋脚,塑性変形性能,静的格子モデル解析

1. はじめに

鉄筋コンクリート(RC)橋脚は,一般に,地震荷 重によってその断面形状・寸法が決定されるため, RC 橋脚の耐震性能を適切に評価することが重要で ある。現行のコンクリート標準示方書[耐震性能照 査編]¹⁾では,非常に大きな地震力が作用する場合, 部材の塑性化を許容している。よって,RC 橋脚の 地震時挙動を把握するためには非線形解析による応 答予測が必要となる。このとき,解析を予測精度良 く行うためには,材料の非線形履歴特性を適切に解 析に取り込むことが必要となってくる。

RC 橋脚は,多くの場合,橋脚基部でフーチング など躯体断面より大きなマッシブなコンクリートに 接合されている。地震時に,橋脚頭部に繰返し水平 力を受けた場合,作用水平力に対して橋脚頭部で水 平応答変位が生じる。この水平変位の中には,躯体 の曲げ及びせん断変形の他に,フーチングから軸方 向鉄筋が抜け出すことによる付加的な変形が含まれ る。この抜出し現象は,軸方向鉄筋がフーチング内 に十分な定着長を有している場合でも,鉄筋の引張 塑性領域がフーチング内部方向に進展することによ って生じうる。また,RC 橋脚が大変形領域に達す る場合,軸方向鉄筋の抜出しに起因する水平変位は, 全水平変位に対して無視できない大きさとなる。

そこで本研究では,格子モデル²⁾により静的正負

交番解析を行い, この解析の中で鉄筋の抜出し挙動 を考慮することにした。格子モデルは, RC 部材を 軸力のみを伝えるトラス要素に離散化しているので, 力の流れが容易に特定できる。さらに,部材内部の せん断耐荷機構を把握することで,その解析結果の 妥当性を確認することもできる。軸方向鉄筋の座屈 挙動を考慮することで,最大耐力以降の大変形領域 における予測精度も向上した³⁾。

本研究では,軸方向鉄筋の抜出しを考慮した静的 格子モデル解析を行い,静的繰返し水平力を受ける RC 橋脚の非線形履歴挙動を評価する。このとき, 橋脚とフーチングの接合部に,その位置での鉄筋ひ ずみとすべり量の関係を組み込んだ接合要素を用い ることで,フーチングからの軸方向鉄筋の抜出し挙 動を再現する。

2. 格子モデル

2.1 格子モデルの概要

格子モデル^{2),3)}では,図-1に示すように,コンク リートは曲げ圧縮部材,曲げ引張部材,斜め圧縮部 材,斜め引張部材,端部水平部材,アーチ部材に離 散化される。補強筋は軸方向部材,水平部材にモデ ル化される。また,コンクリートの斜め圧縮部材と 斜め引張部材を,45度と135度方向に規則的に配置 し,端部節点以外で変位が独立な部材であるアーチ

*1 東京工業大学大学院 理工学研究科土木工学専攻 工修(正会員)

*2 東京工業大学大学院教授 理工学研究科土木工学専攻 工博(正会員)

図 - 1 RC橋脚に対する格子モデル概略図

部材を組み込むことで,斜めひび割れ発生後,マク 口的な圧縮力の方向の変化に対応できる。

2.2 各要素のモデル化

図 - 2 は,格子モデルにおけるコンクリート部材 断面区分の概念図である。柱のコンクリート部分を 図 - 2 に示すように,トラス部分とアーチ部分に区 分する。それぞれの要素の幅は,アーチ部分は bt, トラス部分はb(1-t) (0<t<1)となる。この時,t値は, 部材の初期状態における微小な強制変位に対する, 部材全体のポテンシャルエネルギーが最小となるよ うに定める。t値の決定に関して本研究では,従来 の格子モデル^{2),3)}と同様に,各構成要素に蓄えられ るひずみエネルギーと外力のなす仕事の総和から定 義されるポテンシャルエネルギーが最小となる時の t値を求め,以後の格子モデル解析に用いた。

2.3 コンクリートモデル

コンクリートモデルは,従来の格子モデル^{2),3)}の それと同様である。以下にその概要を示す。

コンクリートの斜め圧縮部材,アーチ部材に対し て,帯鉄筋による拘束効果を考慮するために,

図-2 格子モデル断面区分の概念図

Mander らが提案した圧縮応力 σ'_c - 圧縮ひずみ ε'_c 関係 ⁴⁾を採用した。さらに, Collins らが提案した, ひび割れたコンクリートの引張ひずみ ε_t の増加に伴う,直交方向の圧縮強度の軟化挙動 ⁵⁾を式(1)によって評価した。コンクリート圧縮モデルを図 - 3 に示す。なお,コンクリートの曲げ圧縮部材では圧縮軟化を考えず,式(1)の軟化係数を η = 1.0 としている。

$$\eta = 1.0 / \left\{ 0.8 - 0.34 (\varepsilon_t / \varepsilon_o) \right\} \le 1.0$$
(1)

$$\Box \Box \overline{C} , \ \varepsilon_o = -0.002$$

除荷剛性,再載荷剛性には初期剛性を用い,直線 的に応力が低下,もしくは回復するものとした。 コンクリートの曲げ引張部材は,鉄筋を含んだ領

図 - 7 降伏後の鉄筋ひずみ分布¹¹⁾

域に位置しているため,コンクリートと鉄筋の付着 作用を考慮した。ひび割れ前は弾性体と仮定し,ひ び割れ発生後には岡村・前川のテンションスティフ ニングモデル(図-4)を用いた。このとき,ひび割 れ発生ひずみ ε_{cr} は 0.0001 とし,ひび割れ発生後の 引張応力 σ_t -引張ひずみ ε_t 関係には式(2)を用いた。

 $\sigma_t = f_t \left(\varepsilon_{cr} / \varepsilon_t \right)^{0.4} \tag{2}$

ここで, f_t : コンクリートの引張強度

また,コンクリートの斜め引張部材には,鉄筋の 付着作用が影響しないと仮定した。よって,コンク リート特有の脆性的な軟化挙動を表現するために, 引張軟化曲線として図 - 5 に示すような 1/4 モデル を適用した。このとき,破壊エネルギーG_Fは普通コ ンクリートの標準的な値 0.1 N/mm とした。

除荷,再載荷時の応力-ひずみ関係は原点指向型 とし,直線的に応力が低下,回復するものとした。

2.4 鉄筋モデル

鉄筋の応力 - ひずみ関係には,単調載荷下ではバ イリニアモデルを用いた。また,繰返し載荷を受け る場合には,応力が正負反転する際に現れるバウジ ンガー効果を考慮するために,Katoモデル⁶⁾と同等 の精度を有し,かつ数値計算に適した福浦らの数値 モデル⁷⁾を用いた(図-6)。

2.5 軸方向鉄筋の抜出しモデル

本研究では,フーチングから軸方向鉄筋が抜け出 す現象を,橋脚基部の軸方向鉄筋のひずみと軸方向 鉄筋がフーチングから抜け出した量の関係,つまり 鉄筋ひずみ-すべり関係で評価し,これを橋脚-フ ーチング接合部に適用することで再現することとし た。このとき,抜出しモデルは,単調載荷時の包絡 線には石橋らの提案式⁸⁾を採用した。また,繰返し 載荷時の履歴モデルには,島ら⁹⁾,申ら¹⁰⁾の鉄筋ひ ずみ - すべりモデルに基づいて, 大きな塑性ひずみ を受けた際の繰返し挙動を把握できるように三島ら によって拡張されたモデル¹¹⁾を採用した。なお, 鉄筋降伏前には申ら¹⁰⁾の繰返しモデルをそのまま用 いた。一方,鉄筋降伏後では,図-7 に示すように 鉄筋ひずみが不連続に分布していると考えられる。 よって塑性域と弾性域に分けて考え,それぞれの部 分のすべり量を足し合わせることで全体のすべり量 を算定した。塑性域におけるすべり量は,コンクリ ートの変形を無視し,鉄筋ひずみを軸方向に積分し た値(図-7の斜線部分の面積)として求めた。ま た,弾性域のすべり量は,塑性域と弾性域の境界に おける応力の連続性を考慮し,塑性域の鉄筋ひずみ から求めた鉄筋応力を用いて求めた。このとき,塑 性域における鉄筋の応力 - ひずみ関係に Kato モデ ル ⁶⁾を適用した。以上より求められた鉄筋ひずみ -すべり量関係の概略図を図-8に示す。

3. 解析概要

3.1 解析対象とした実験の概要

解析対象には,石橋らによる静的正負交番載荷実 験⁸⁾を選定した。この実験では,フーチングからの 軸方向鉄筋の抜出し量に着目して,交番載荷を受け る大変形時の RC 橋脚の変形性能を評価している。 実験において,予め設けたフーチング側面の空洞に 変位計を設置し,供試体内にワイヤーを通したシー ス管を埋設し,ワイヤーの先端をフーチング上面位 置の軸方向鉄筋と連結することによって,軸方向鉄 筋の抜出し量を直接計測可能にしている点が特徴で ある⁸⁾。供試体の寸法,および配筋を図-9に示す。 また,供試体の諸元,およびコンクリート,鉄筋の 材料特性を表-1 に示す。載荷時に軸圧縮応力が所

供試体	断面形状	コンクリート		軸方向鉄筋	帯鉄筋		軸応力	
No.	$(mm \times mm)$	圧縮強度(MPa)	呼び名	降伏強度(MPa)	弾性係数(GPa)	呼び名	間隔(mm)	(MPa)
A1		26.4	D10	378.	183.		80.	0.08
A2		23.3	D19	378.	183.		60.	0.90
A3		26.8	D16	397.	184.	D13	70.	0.49
A5	400×400	29.1	D13	358.	181.	D15	140.	
A6		30.9	D19	378.	183.		50.	
A8		23.8	D16	397.	184.		120.	0.08
A9		21.7		378.	183.	D16		0.98
A11	500 × 500	24.6	D19	378.	183.	D13	60.	
K1	400 × 400	19.4		375.	182.	D15		

表 - 1 供試体諸元,および材料特性

定の値となるように,橋脚頭部において鉛直方向に 一定軸圧縮力を作用させている。水平力の載荷方法 は,初降伏変位($\delta_y = 5.8 \text{ mm}$)を基準とし,変位振 幅を δ_y の整数倍に順次増加させていく一定振幅変 位漸増方式である。ここで初降伏変位とは,橋脚基 部最外縁引張鉄筋のひずみが降伏ひずみに達した時 の載荷点水平変位である。各振幅での繰返し回数は 1回である。

3.2 解析モデル

図 - 9 で示した供試体を図 - 10 に示す静的格子モ デルに離散化した。橋脚基部における接合要素には, 前述の鉄筋ひずみ - すべり関係を組み込ん でいる。このとき,接合要素の長さは村山 らの研究¹²⁾を参考に軸方向鉄筋の直径Dと^{単位:} 一致させた。

4. RC 橋脚の静的正負交番解析

4.1 鉄筋の抜出し量に関する検討

実験において,前述のように供試体 K1 ではフーチングからの軸方向鉄筋の抜出し 量を直接測定している。橋脚基部位置での 鉄筋ひずみと鉄筋抜出し量の関係を図 - 11 に示す。実験では終局状態に至るまでの鉄 筋の抜出し挙動を安定して計測できている。 同図中には今回の解析によって得られた, 橋脚 - フーチング間接合要素の鉄筋ひずみ - すべり履歴も示している。図 - 11 より, フーチングからの鉄筋の抜出し挙動を,橋 脚基部位置の鉄筋ひずみ - すべり関係によ って妥当な精度で捉えることができている ことがわかる。以上より,本手法によって フーチングからの軸方向鉄筋の抜出し挙動 を適切に予測できることを確認した。

4.2 履歴特性

RC 橋脚を対象とした静的正負交番載荷実験,お よび静的格子モデル解析の結果の一例として,供試 体 K1 の水平力 - 水平変位関係を図 - 12 に示す。解 析では,橋脚 - フーチング接合部に鉄筋の抜出しを 考慮した場合と無視した場合を示している。ここで, 解析では,鉄筋の抜出し単独の影響を調べることを 主たる目的とし,また各供試体には比較的密に帯鉄 筋が配置されていることを考えて,鉄筋の座屈挙動 は無視している。今後,鉄筋の座屈挙動と抜出し挙 動の相互作用についても検討していく予定である。

図 - 12 に見られるように,大きな水平変位が作用 した際,軸方向鉄筋の抜出しを考慮した場合の履歴 曲線の形状は,無視した場合と比べると若干やせて きており,除荷剛性も小さくなっている。エネルギ ー吸収性能を比較するため,1 サイクルの履歴曲線 に囲まれる面積として算出した,履歴吸収エネルギ ーと水平変位の関係を図 - 13 に示す。解析では,実 験結果に見られるような,水平変位が約 80 mm 以降 に履歴吸収エネルギーが低下する挙動を予測できて いる。これより,抜出しを考慮することによって, 除荷剛性,エネルギー吸収性能の予測精度を向上さ せることができることがわかる。また,残留変位の 予測を含むような高精度の解析手法の構築には,抜 出しを考慮することが必要であると考えられる。

終局状態において,抜出しを考慮した場合と無視 した場合の違いは,アーチ部材の圧縮軟化の程度に 関する違いによって説明できる。図 - 14 は,抜出し を考慮した場合と無視した場合における,アーチ部 材の圧縮応力 - 圧縮ひずみ履歴曲線である。抜出し モデルを橋脚 - フーチング接合部に組み込んだ場合, RC 橋脚が大変形領域に達した際,接合面,つまり 曲げひび割れ面における鉄筋は,大きな曲げ引張力 動は実験結果にも見られるものであることがわかる。

4.3 RC 橋脚の塑性変形挙動に与える軸方向鉄筋,
 帯鉄筋,および軸力の影響

RC 橋脚の変形性能に影響を与える軸方向鉄筋, 帯鉄筋の量や軸力の大きさを変化させた場合の塑性 変形挙動を, 抜出しを考慮した静的格子モデル解析 によって予測することを試みた。実験結果,および 解析結果を表 - 2 にまとめる。また, それぞれの供 試体における, 各応答値の実験結果を解析結果で除 した値を図 - 15 に示す。ここで,終局変位とは,荷 重 - 変位の包絡線において,降伏変位時の荷重を下 回らない最大水平変位とし、この終局変位を降伏変 位で除した値をじん性率として算出している。従来 の格子モデルでは、初期剛性を実際の供試体のそれ より高めに評価する傾向が見られたが,格子モデル にフーチング部分を含み,さらに鉄筋抜出しモデル を組み込むことで,実験結果より初期剛性を若干低 く評価している。その結果,本手法によって算出さ れた降伏変位は実験より大きくなり、じん性率は実 験より小さく 若干ばらついた結果となった。一方, 鉄筋降伏後以降の挙動は、最大変位、および終局変 位ともに妥当な精度で予測できていることがわかる。

を受けて大きな引張ひずみ を生じ,ひずみ硬化域に達 する。その結果,橋脚基部 と載荷点位置を結ぶアーチ 部材に作用する圧縮力が大 きくなり,大きな圧縮ひず みを生じることになる。こ れより,RC 橋脚の荷重 -変位関係は荷重低下領域に 進展するが,同時にこの挙

供試体	降伏变位 (mm)		終局変位 (mm)		じん性率		降伏水平耐力 (kN)		最大水平耐力 (kN)	
No.	実験	解析	実験	解析	実験	解析	実験	解析	実験	解析
A1	8.1	9.5	73.4	69.3	9.0	7.3	218.9	230.7	282.9	283.1
A2	7.7	9.0	82.1	80.1	10.7	8.9	214.6	258.9	278.3	291.8
A3	6.2	8.0	76.8	69.4	12.4	8.7	143.5	187.9	203.9	237.1
A5	5.4	6.5	90.2	46.1	8.9	7.1	114.1	141.9	145.3	150.4
A6	6.9	9.0	61.3	85.5	13.0	9.5	222.4	225.6	307.3	290.4
A8	6.5	8.5	61.3	56.1	9.4	6.6	175.1	214.8	222.9	241.0
A9	6.8	9.0	90.7	82.9	13.3	9.2	208.0	210.6	292.3	290.7
A11	5.8	6.0	71.6	78.6	12.4	13.1	265.8	232.7	366.4	322.6
K1	5.8	6.0	78.1	76.0	13.5	12.7	208.7	241.4	274.4	287.0

表 - 2 静的正負交番実験結果,および静的格子モデル解析結果

5. まとめ

本研究では,軸方向鉄筋のフーチングからの抜出 し挙動を考慮した静的格子モデルを用いて,RC 橋 脚の静的正負交番解析を行った。得られた結論を以 下にまとめる。

- (1)静的格子モデルにおいて,橋脚基部における鉄筋ひずみ-すべり関係を組み込んだ接合要素を, 橋脚-フーチング接合部に配置して抜出しを考慮することで,RC橋脚の塑性変形挙動の予測精度を向上できることがわかった。
- (2) 軸方向鉄筋の抜出しを考慮することによって、 履歴曲線の形状は実験結果に近付き、また除荷 剛性、およびエネルギー吸収性能に関して、予 測精度が向上することを確認した。

参考文献

- 1) 2002 年制定コンクリート標準示方書[耐震性能照査編],
 土木学会,2002.12
- 二羽淳一郎,崔 益暢,田辺忠顕:鉄筋コンクリートは りのせん断耐荷機構に関する解析的研究,土木学会論文 集, No.508/V-26, pp.79-88, 1995.2
- 三木朋広, Lertsamattiyakul, M., 二羽淳一郎:鉄筋座屈 を考慮した格子モデルによる RC 橋脚の静的正負交番解 析, コンクリート工学年次論文集, Vol.24, No.2, pp.979-984, 2002.6
- 4) Mander, J. B., Priestley, M. J. N. and Park, R.: Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, ASCE, Vol.114, No.8, pp.1804-1826, August, 1988.
- Vecchio, F. J. and Collins, M. P.: The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, Vol.83, No.2, pp.219-231, Mar./Apr.,1986

- Kato, B.: Mechanical Properties of Steel under Load Cycles Idealizing Seismic Action, CEB Bulletin D'Information, No.131, pp.7-27, May 1979
- 7) 福浦尚之,前川宏一: RC 非線形解析に用いる鉄筋の繰
 り返し履歴モデル,土木学会論文集,No.564/V-35,
 pp.291-295,1997.5
- 8) 石橋忠良,小林 薫,海原卓也:大変形領域の交番荷重 を受ける RC 橋脚のフーチングからの鉄筋抜け出し量算 定法に関する研究,土木学会論文集,No.648/V-47, pp.43-54,2000.5
- 9) Shima, H., Chou, L. and Okamura, H.: Micro and Macro Models for Bond Behavior in Reinforced Concrete, Journal of the Faculty of Engineering, The University of Tokyo (B), Vol.39, No.2, pp.133-194, 1987
- 10) 申 鉱穆:繰り返し面内力を受ける鉄筋コンクリート
 部材の有限要素解析,東京大学博士論文,1988.6
- 三島徹也, Bujadham, B., 前川宏一:鉄筋コンクリート離散ひび割れを構成する材料モデルの開発,土木学会論文集, No.422/V-16, pp.171-179, 1992.2
- 12) 村山八洲雄,一宮利通,須田久美子:マッシブなコンクリートに定着された鉄筋の応力-伸び出し履歴モデル,構造工学論文集,Vol.47A,pp.673-684,2001.3