論文 断層変位を受けるコンクリート連続桁橋の安全性に関する研究

田中 智行*1・三井 欣二*2・北台 修一*3・大塚 久哲*4

要旨: 我が国では 1995 年の兵庫県南部地震を契機に,橋梁の耐震性能を確保するように設計 手法が改善されている。しかし,断層変位による橋梁の被害形態を推定するための解析・実験 データが少ないのが現状である。本論文では既設の連続桁橋(支間長 20~30m 程度, 3~7 径間)を対象に,断層変位を受ける場合の解析を行った。その結果,断層変位 0.2~1.0m で 上部構造もしくは下部構造が損傷を受けることが分かった。また,橋脚高さや上部構造の特 徴が耐震性能に影響を及ぼすことも分かった。

キーワード:断層変位,PC連続桁橋,非線形静的解析,強制変位入力

1. はじめに

1999年9月21日に発生した台湾集集地震は, 数多くの構造物に多大な被害を与えた。橋梁に 関する被害の多くは,数メートルの地盤変位を 受け,上部構造が落橋したものであった。

そうした断層運動による地盤変位が予想され る場合,可能な限り構造物を構築することを避 けるべきであると考えられる。しかしながら橋 梁においては,道路施設の連続性,国内におけ る数百の断層の存在,断層が地表に現れた場合, その断層帯の破壊域が広域であるといった理由 から,断層上に橋梁を架設せざるを得ない場合 も少なくないにもかかわらず,国内では設計時 に断層変位を考慮する義務はないのが実情であ る。

本論文は,国内に存在する PC 連続桁橋を3橋

選定し,断層変位に対する安全性の検討を行っ た結果を述べたものである。具体的にはスパン や橋脚高さ,適用基準が異なる既設橋梁に対し, 断層変位量や方向,断層発生位置をパラメータ に,発生する力学的イベントを数値的に明らか にすべく静的非線形解析を行ったものである。

- 2. 対象橋梁と解析手法
- 2.1 対象橋梁

対象橋梁は、以下に示す項目に着目し表-1 に示す3橋とした。

- (1)適用示方書:昭和 55 年,平成 8 年道路橋 示方書
- (2) 支間長: 20m, 30m 程度
- (3) 橋脚高さ:10m, 20m 程度
- (4) 上部構造形式の違い

概要図を図-1~3に示す。

	A 橋	B 橋	C 橋	
構造形式	PC6 径間連続合成桁橋	PC3 径間連結プレテン床版橋	PC7 径間連続中空床版橋	
適用示方書	昭和 55 年道路橋示方書 平成 8 年道路橋示方書		平成8年道路橋示方書	
橋長	175.500m	61.000m	204. 400m	
支間長	29.5+4@30.0+25.0m	19.2+20.2+19.2m	28.55+5@29.20+28.55m	
有効幅員	9.25m	4.00m	9.50m	
橋脚高	19.0~32.0m	10.10m	6.8∼9.2m	
地盤種別 1,2種地盤		2種地盤	3種地盤	

表-1 対象橋梁一覧

*1 中央コンサルタンツ(株) 福岡支店 設計部 工修(正会員)

*2 (株) 富士ピー・エス 福岡支店技術部

*3 日本技術開発(株) 福岡支店道路·構造室

*4 九州大学大学院 工学研究院 建設デザイン部門 工博(正会員)

2.2 解析手法

(1) 解析手法

解析手法を以下に示す。

a)対象橋梁に対して断層変位を考慮した強 制変位入力による非線形静的解析(1方向変 位増分解析)を行う。

b)上部構造に関しては,橋軸方向は非線形 部材,橋軸直角方向は線形部材とする。

c)下部構造は橋脚のみ非線形部材,橋台は 線形部材とする。

d) 非線形部材は、初期軸力を考慮して Mφモデルとする。非線形部材は、最外縁のコ ンクリートが曲げ引張強度に達した時をひび 割れ時、最外縁の鉄筋が降伏ひずみ(引張) に達した時を降伏時、最外縁軸方向鉄筋位置 のコンクリートが終局ひずみ(圧縮)に達し た時を終局時とした。

e) 基礎構造に関しては,地盤を考慮した線 形ばねとする。ただし,変位入力箇所は基礎 ばねを無視する。

f) 支承はA橋がタイプAのゴム支承, B, C橋がタイプBのゴム支承である。³⁾支承は線 形ばねとし,支承破断後は検討を行っていな い。

(2) 解析モデル

図-4~6にA橋~C橋の解析モデルを示す。 また,**図**-7に上部構造,橋脚のM-φ曲線を 示す。

(3) 解析ケース

想定する断層変位は端径間部および中央径間 部に発生するとし,断層変位入力方向は橋軸方 向,鉛直方向(上下)方向,橋軸直角方向とし た。

		中央径間部		端径間部
橋軸方向		$\leftarrow \rightarrow$		$\leftarrow \rightarrow$
鉛直方向		\downarrow \uparrow		\downarrow \uparrow , \uparrow \downarrow
橋軸直角方向		$\uparrow \downarrow$		$\uparrow \downarrow$
ケース数		3ケ	ース 4ケース	
ケース	断層の	場所	変位方向	
1	- 端径間部		橋軸方向 ^{※1}	
2			鉛直上方向	
3			鉛直下方向	
4			橋軸直角方向	
5	中央径間部		橋軸方向	
6			鉛直上方向※2	
7			橋軸直角方向	

表-2 検討ケース一覧

※1 A橋は、両端部が可動支承であるためケース1を除いた。※2 A橋は鉛直下方向。

3. 解析結果

中央径間に断層が発生する場合(ケース5~7)の解析結果について報告する。

- 3.1 A橋
- (1) 橋軸方向断層変位(ケース5)

A橋のケース5(橋軸方向)における P13橋 脚の曲げモーメント耐力と発生曲げモーメント を図-8に、図-9に支承の耐力と発生水平力を 示す。橋脚基部の発生曲げモーメントに着目す ると、水平変位 0.07m でひびわれ耐力、0.50m で降伏耐力、1.00m で終局耐力を超えている。 なお、橋脚の発生せん断力は水平変位 1.00m が 生じてもせん断耐力を超えず、上部構造の発生 断面力は許容耐力を超えなかった。

支承の耐力はアンカーバーのせん断耐力に支配されるが, P13 橋脚上において水平変位 0.50mでアンカーバーの耐力を超えている。

(2) 橋軸鉛直下方向断層変位(ケース6)

図-10 にケース6(鉛直下方向)における上 部構造の曲げモーメント耐力と発生曲げモーメ ントを示す。P13 橋脚付近の主桁下縁側におい て,鉛直変位0.50mで降伏耐力を超え,鉛直変 位1.20m 程度で終局耐力を超えると思われる。 また,橋脚の発生せん断力はせん断耐力を超え なかった。なお,橋脚,支承に関しては,発生 断面力は降伏耐力,圧縮耐力を超えなかった。

生曲げモーメントの関係

(3) 橋軸直角方向断層変位(ケース7)

ケース7(橋軸直角水平方向変位)における P13橋脚の曲げモーメント耐力と発生曲げモー メントを図-11に,図-12に支承の耐力と発生 水平力を示す。橋脚基部の発生曲げモーメント に着目すると,水平変位0.25mでひびわれ耐力, 0.70mで降伏耐力を超えている。1.20m程度で終 局耐力を超えると思われる。なお,橋脚の発生 せん断力は水平変位1.00mが生じてもせん断耐 力を超えず,上部構造に関して発生断面力は許 容耐力を超えなかった。

支承の耐力はアンカーバーのせん断耐力に支 配されるが、P13、14 橋脚上において水平変位 0.50mで支承の耐力を超えている。

3.2 B橋

(1) 橋軸直角方向断層変位(ケース5)

図-13にケース5におけるP1及びP2橋脚の 曲げ耐力と発生曲げモーメント分布図を示す。 P1 及び P2 橋脚とも基部に曲げモーメントが発 生するが,水平変位 0.10m でひびわれ耐力,水 平変位 0.20m で降伏耐力を超える結果となった。 橋脚のせん断力及び上部構造に関しては,断層 変位が 0.50m までであれば,ひびわれにも至っ ていない結果となった。

(2) 橋軸直角方向断層変位(ケース7)

図-14 にケース7 における P1 及び P2 橋脚の 曲げ耐力と発生曲げモーメント分布図を示す。 P1 橋脚については,水平変位 0.40m でひびわれ 耐力, 0.50m で降伏耐力を超えるが, P2 橋脚は 水平変位 0.20m でひび割れ耐力, 0.30m で降伏 耐力を超える結果となった。

橋脚のせん断力及び上部構造に関しては、断 層変位が 0.50m までであれば、ひびわれにも至 っていない結果となった。

3.3 C橋

(1) 橋軸方向断層変位(ケース5)

他橋脚に比べ最も大きな橋脚基部断面力を示 した P68 橋脚について,図-15 に曲げ耐力と発 生曲げモーメント分布とせん断耐力と発生せん 断力の分布を示す。

P68 橋脚の基部曲げモーメントは,水平変位 0.20m 到達前でひびわれ耐力を上回り,水平変 位 0.40m 程度で終局耐力に近い値を示した。一 方,せん断力は,水平変位 0.80m 程度で発生せ ん断力がせん断耐力の値を上回る結果となった。

(2) 橋軸鉛直方向断層変位(ケース6)

上部構造における,曲げ耐力と発生曲げモー メントの分布を図-16に示す。断層位置に近い P67 橋脚上支点付近において正の発生曲げモー メントが,および P68 橋脚上支点位置の負の発 生曲げモーメントが,鉛直変位量 0.20mのとき にひび割れ耐力に近い値を示し,断層変位量 0.40m のときにはすでに発生曲げモーメントが 終局耐力を超える結果となった。

図-17 に上部構造のせん断耐力と発生せん 断力分布を示す。P67 橋脚上支点付近では,断 層変位量 0.20m 程度を超えると発生せん断力が せん断耐力を超える結果となった。また,図-17 から,断層変位 0.60m 程度では,P66 からP68 橋脚間の 2 径間におけるせん断力の分布曲線形 状はほぼ 1 直線となり,P66 橋脚上とP68 橋脚 上を支点とした単径間のせん断力分布に近い形 状になったことが分かる。

(3) 橋軸直角方向断層変位(ケース7)

他橋脚に比べ橋脚基部に最も大きな断面力を 示した P67 橋脚について,図-18 に曲げ耐力と 発生曲げモーメント分布とせん断耐力と発生せ ん断力の分布を示す。

P67 橋脚の基部において曲げモーメントが, 水平変位 0.20m 到達前でひびわれ耐力を,水平 変位 0.40m 到達前で初降伏・終局耐力を超えた。 一方,せん断力については,水平変位 0.80 では 発生せん断力がせん断耐力を下回っているが, 水平変位 1.00m のときにはすでに発生せん断力 がせん断耐力を上回る結果となった。

3.4 まとめ

今回の解析結果について以下のように考察する。

(1) 解析結果について

PC連続桁橋の静的非線形解析を行った結果 についてまとめると,以下のとおりである。

a) 損傷を受ける部位の断面力は,軸力やせん断力よりも曲げモーメントが支配的であった。

b) 橋軸方向および橋軸直角方向の水平変位 を受ける場合では,橋脚基部が大きく損傷を受 け水平方向変位 0.20~0.50m程度で終局に至 った。また,橋脚高さの違いによる耐震性能に ついては,橋脚高が高いほど断層変位に対して 有利であることが分かった。これは,断層変位 が生じた場合,橋脚高さが高いほど,橋脚基部 に発生する回転角が小さくなり,損傷が小さく なったためと考えられる。

c) 鉛直方向の変位を受ける場合では、上部 構造が大きく損傷を受け鉛直方向変位 0.20~ 1.00m程度で終局に至る結果となった。上部構 造について、断層変位に対する耐震性能を高い 方から示すとA, B, 最後にC橋の順であると いえる。

d) タイプA支承が用いられているA橋では、 支承耐力はアンカーバーのせん断耐荷力に支配 され、橋軸・橋軸直角方向の水平変位 0.50m で 支承耐力を超える結果となった。

(2) 橋種の違いにおける耐震性能について

上部構造の桁高はA橋が最も高く,C橋,B 橋の順に低くなっており,部材剛性も同様の順 になっていると考えられる。しかしながら,C 橋が終局に到る時の断層変位量は他に比べ小さ い。

C橋の鉛直断層変位に対する耐震性能が低い 理由は,PC材配置が常時荷重に対してのみ配置 された構造のため,断層変位を受けて発生する 中間支点付近の正曲げ応力に対しプレストレス の作用方向が同方向となり,部材の圧縮・引張 応力が他の橋種に比べて極端に大きくなり,耐 荷力不足が著しくなったものと考える。

(3)橋脚高さの違いにおける耐震性能について

幅員が同程度であるA橋(10.900m)とC橋 (10.650m)に着目する。C橋では,終局時の水平 変位量が 0.4m 程度であるが,A橋では,0.5m 程度であった。断層が端径間に発生した場合の 解析結果も総合すると,橋脚が高いほど断層変 位に追随し,耐震性能も高くなるものと考えら れる。

4.おわりに

今回は、3橋の解析結果および参考文献をも とに、連続桁橋の断層変位に対する耐震性能の 確認を行った。その結果 0.2m~1.0m 程度の断層 変位量で、上部構造、下部構造もしくは支承が 損傷を受ける結果となった。しかし、台湾集集 地震で生じた断層変位は7m とも言われ、PC 連 続桁橋がこのような断層変位を受けた場合、橋 梁の損傷、落橋する可能性が高いと考えられる。 よって、橋梁の耐震補強、落橋防止システムの 再構築等何らかの対策が必要と考えられる。

今回の検討は3橋のみを対象としており,断 層変位に対する連続桁橋の耐震安全性を確保す るには,今後さらなるケーススタディと他橋種 を含む橋種選定の検討,さらに耐震対策の検討 も必要と考えられる。本研究が今後のさらなる 研究の一助となれば幸いである。

なお、本研究は JCI 九州支部「断層変位を受 けるコンクリート系橋梁の耐震安全性に関する 研究委員会」の活動の一部として行ったもので ある。

参考文献

1)断層変位を受けるコンクリート系橋梁の耐 震安全性に関する研究委員会,大塚久哲,矢 葺亘ほか:同委員会報告書,平成14年11月,

(社)日本コンクリート工学協会・九州支部

- 2)高原,大塚,矢葺,:断層変位がPC斜張橋の耐震安全性に及ぼす影響について,平成14 年3月,土木学会西部支部研究発表会
- 3) 道路橋示方書·同解説, 平成14年3月