論文 鉄筋接合部に欠陥を持つ RC 橋脚の地震応答に関する研究

藤原 武彦*1·林 和彦*2·足立 幸郎*3·池田 尚治*4

要旨:旧設計基準により設計された既設の RC 橋脚において,鉄筋接合部に欠陥を持つ場 合にその欠陥が橋脚の耐荷性能,変形性能に及ぼす影響を把握した。意図的に軸方向鉄筋 に欠陥を設けた供試体と欠陥を設けない供試体について,それぞれに静的正負繰返し載荷 実験および準動的載荷実験を行った結果,地震時応答挙動,破壊形態,ひび割れ状況に大 きな違いが生じた。欠陥がない場合は激しくせん断破壊し倒壊に至るのに対して,鉄筋接 合部に欠陥がある場合,欠陥を持つ断面に損傷は集中するものの橋脚は倒壊を免れる可能 性があることが明らかにされた。

キーワード: RC 橋脚,鉄筋接合,欠陥,曲げ破壊,せん断破壊

1. はじめに

1995年の兵庫県南部地震においては多くの高 架橋橋脚に甚大な被害が生じ,その一部は倒壊 に至った。これらは,旧設計基準である許容応 力度設計法によって設計されていたために,フ ープ筋の鉄筋比が少ないことにより,想定をは るかに超えた地震力によってせん断破壊に至っ たものと考えられている。その中で隣接した外 見上全く同一の橋脚が一方は倒壊に至り,他方 はある程度の損傷はあるが倒壊は免れるという 被災状況に大きな差が生じたものがあった。池 端らはこのような事象が生じることを,地震波 の種類と最大加速度を考慮した研究により力学 的に示した^{1),2)}。

一方で,地震後に一部の橋脚では軸方向鉄筋 のガス圧接部に破断が観察されたため,これを 橋脚倒壊の直接的要因とする見解もあったが, これまでその因果関係は明らかにされていなか った。このため鉄筋接合部の欠陥が橋脚の耐荷 性能,変形性能に与える影響を力学的に明らか にすることは極めて重要である。 本研究では兵庫県南部地震において倒壊した 実橋脚^{1),2)}を1/7にスケールダウンし,鉄筋のガス 圧接部の欠陥を想定し,意図的に軸方向鉄筋に 欠陥を設けた供試体を作製し実験することで, 鉄筋接合部の欠陥がRC橋脚の耐荷性能,変形性 能に及ぼす影響を把握することを目的とした。

図-1 供試体全体形状図

*1 横浜国立大学大学院 工学府社会空間システム学専攻(正会員)
*2 横浜国立大学大学院 工学研究院 助手 修(工)(正会員)
*3 阪神高速道路公団 工務部工務第一課(正会員)
*4 横浜国立大学 名誉教授 工博(正会員)

2. 実験概要

2.1 供試体諸元

供試体の全体形状を図-1に、断面形状を図-2に示す。供試体の諸元を表-1に示す。

全供試体とも共通の円形断面を有する中実RC 橋脚であり,基部は3段配筋となっており,柱 部途中で軸方向鉄筋の途中定着部が2箇所設け られている。断面の直径は400mm,せん断スパ ンが1680mmのフーチング付き独立1本柱形式で ある。軸方向鉄筋の配筋はフーチング上面から

表一1 供試体諸元

供試体名	欠陥部	載荷方法	
N-ST	1	静的載荷	
N-PD		準動的載荷	
WD-ST	右り	静的載荷	
WD-PD	伯ワ	準動的載荷	

供封休夕	軸方向鉄筋比(%)					
供码件名	A断面	B断面	C断面	D断面	E断面	F断面
Nタイプ	0.91		1.81	2.27	2.27	2.27
WD タイプ	0.91		1.81	2.27	1.59	2.27
	フープ筋比(%)					
共通	0.0971 0.0485		0.0971	0.146	0.146/0.194	0.194

表-2 各断面の鉄筋比

480mmの位置で3段から2段に,840mmの位置 で2段から1段になっている。

調査の結果,実橋脚ではフーチング上面から およそ1.6mの位置の最外縁の軸方向鉄筋にガス 圧接による鉄筋接合部が設けられていた。本研 究では,接合部に欠陥がなく健全であったと想 定して接合部を考慮しなかった供試体(以下, Nタイプ)と,接合部に欠陥があったと想定し て,上記の位置に相当する高さに欠陥を有する 供試体(以下,WDタイプ)を設定した。それ ぞれ2体の供試体を作製し,静的正負繰返し載 荷実験,準動的載荷実験に用いた。

各断面の鉄筋比を表-2に示す。使用したコ ンクリートの力学的特性を表-3に,鋼材の力 学的特性を表-4に示す。

2.2 欠陥位置とその状態

欠陥を有する供試体については、供試体作製 時に予めフーチング上面から230mm(=1600mm/7)の位置において最外縁の全ての軸 方向鉄筋を、断面積が1/4になるようにフライス 盤により断面を切削した。したがって橋脚断面 としては鉄筋断面積が欠陥のない場合に比べて 70%となる。

2.3 計算耐力

ファイバーモデルにより各断面のひび割れ荷 重,降伏荷重,最大荷重を算出した。この計算 結果を表-5に,途中定着部がないと仮定し基 部断面(F断面)に対して求めた荷重-変位関係 を図-5に示す。

3. 静的正負繰返し載荷実験

3.1 載荷方法

載荷の繰返しは,各管理変位で1回とした。

供試体名 材齢(Day	+++ 些(D)	柱部コンクリート部				
	杉 图F(Day)	圧縮強度(MPa)	引張強度(MPa)	弾性係数(MPa)	ポアソン比	
	N-ST	33	32.4	2.61	23.1	0.17
	N-PD	35	33.9	2.87	23.1	0.17
	WD-ST	29	35.6	2.60	24.7	0.17
	WD-PD	30	34.6	2.81	24.7	0.17

表-3 コンクリートの力学的特性

表-4 鋼材の力学的特性

種類		公称断面積(mm ²)	降伏锚度(MPa)	引張強度(MPa)	础性区粉(MP₂)	演用
呼び径	規格	四小时回復(111117)+ 1_ (N 55 (1 VII a)	週八
D3	SD295A	_	285	356	189	フープ筋
D6	SD295A	31.67	319*1	524	186	軸方向鉄筋

*1 D6 鉄筋は降伏点が明瞭でないため 0.2%永久伸びに対する荷重を公称断面積で除した値とした。 また,既往の実験^{1),2)}と同じ規格である SD345 を使用することとしたが,鋼材メーカーからの納入が結果 的にこの規格に対応するものとなった。

	断面	Pcr(kN)	Py(kN)	Pmax(kN)	
	A, B	43.1	96.0	124.7	
Nタイプ	С	30.9	95.6	129.1	
	D,F	22.1	75.0	103.8	
WDタイプ	A, B	43.1	96.0	124.7	
	С	30.9	95.6	129.1	
	Е	24.5	62.2	90.4	
	D, F	22.1	75.0	103.8	
B断面せん断耐力*1	39. 7kN				
B断面せん断耐力*2	98. 6kN				

表-5 計算曲げ耐力

*1 平成8年度版および14年度版道路橋示方書,耐震設計 編に準じて算出した値

*2 0.785MPa×断面積によって算出した値

管理変位は部材回転角1/200Rad(載荷点変位 8.4mm)に整数を乗じた変位とした。

載荷方向は図-1における南北方向とし,以 降北側への押しの荷重及び変位を正(+)の符号で, 南側への引きの荷重及び変位を負(-)の符号で示 す。供試体に作用させる軸応力度は,モデルと した実橋脚の基部における軸応力度1.75MPaと 同じになるようにし,鉛直アクチュエーターに より定軸力220kNを作用させた。

3.2 実験結果および考察

結果の一覧を表-6に示す。実験により得ら れた各供試体の荷重-変位関係を図-3,4に 示す。荷重-変位包絡線を比較したものを図-5に示す。

N-STは正側載荷,負側載荷とも基部における 初期ひび割れ発生後はフーチング上面から 700mmまでの区間において,100mm間隔に曲げ ひび割れが発生し,+2/200Rad載荷途中に840mm の途中定着部付近に斜めひび割れが発生した。 +1/200RadでE断面の最外縁の軸方向鉄筋が降伏 し,+3/200Rad時に最大耐力+95.4kNを記録した。

図-3 N-ST 荷重変位関係

図-4 WD-ST 荷重変位関係

途中定着部付近に発生した斜めひび割れは,曲 げひび割れに比べ管理変位が進むごとに進行, 拡大した。+5/200Rad時には斜めひび割れ幅は最 大3.0mmを記録し(写真-1),最終的にはフー プ筋の破断を経て,大きく荷重が低下したため 載荷を終了した。

WD-STはフーチング上面から230mmの欠陥の

写真-1 N-ST +5/200Rad 時

写真-2 WD-ST -5/200Rad 時

ある断面に沿ってひび割れが発生した。それぞ れの途中定着部には微小な曲げひび割れが発生 したが,斜めひび割れの進行はほとんど見られ なかった。+2/200Rad載荷途中にE断面の最外縁 の軸方向鉄筋が降伏し,+2/200Rad時に最大耐力 +94.1kNを記録し,軸方向鉄筋の欠陥部の破断を 経て,耐力が低下したが,その後は変形の進行 に伴って徐々に耐力が低下する粘りのある挙動 を示した。欠陥部に発生したひび割れは,成長 が著しくそこからは鉛直方向にもひび割れが発 生した(**写真-2**)。

Nタイプは軸方向鉄筋の欠陥がないため,基 部における曲げ耐力は大きくしたがってそれに 伴うせん断力も増加し,途中定着部におけるフ ープ筋が少ないことにより途中定着部に変形が 集中し,せん断破壊に至ったものと考えられる。 一方でWDタイプは欠陥部の存在により,その

付近での曲げ耐力が低いためにせん断力が頭打 ちとなり曲げ破壊に至ったものであると考えら れる。各供試体の載荷終了時の損傷状況を**写真** -3に示す。両供試体で最大荷重にほとんど差 が無いのはNタイプの部材としてのせん断耐力 とWDタイプのE断面曲げ耐力に大きな差が無 いためである。

4. 準動的載荷実験

4.1 載荷方法

準動的載荷実験には,ビデオによる録画シス テムを組み込み,地震波の生起時刻で映像を録

表一6	静的載荷実験結果-	·覧

供試体名	ひび割れ荷重	降伏荷重	最大荷重	降伏時変位	終局時変位
历时件有	Pcr (kN)	Py(kN)	Pmax (N)	δy (mm)	δu (mm)
N-ST	40.0	71.0	95.4	8.4	59.0
WD-ST	30.0	82.0	94.1	10.5	50.0

画できるシステムを用いた。これにより,地震 波の生起時刻に即して供試体の被災状況の観察 を詳細に行うことができる。

4.2 初期設定

使用した初期設定値を以下に示す。

作用地震波は、1995年1月17日の兵庫県南部地 震の際に、JR鷹取駅で観測された地震波のE W成分³⁾(最大加速度666gal)についてピーク値 を600galに調整したもの^{1),2)}とした。継続時間を 15秒とし、図-6に15秒間の地震波の加速度波 形を示す。

初期剛性は静的正負繰返し載荷実験で得られた初期剛性K=21.15kN/mmを用いた。

固有周期は対象とした実橋脚の固有周期の値 を採用して0.59秒とした。

仮想質量は,部材を1質点1自由度系として, 186.86tonとした。

減衰定数は0.03とし、剛性が初期の25%になった時以降を0とした.

4.3 実験結果および考察

結果の一覧を表-7に示す。荷重-変位関係 を図-7,8に,時刻歴-応答変位関係の比較 したものを図-9に示す。

N-PDは2.3秒時に目視できる斜めひび割れがフ ーチング上面から高さ840mmの途中定着部付近 から発生した。その後,4.22秒時に負側の最大 応答変位-24.82mmを記録し,大きな斜めひび割 れが観察された。5.01秒時には正側の最大応答 変位+47.22mmを記録した。その後は,応答振幅 20mm程度,0mmを中心とした振動をし,11秒時 に高さ800mm付近,南面でコンクリートの剥離 が見られ,載荷終了時には高さ840mm付近,南 面の軸方向鉄筋が露呈していた(写真-4(a))。

WD-PDは2.45秒時の正側載荷時に目視できる

表-7 準動的載荷実験結果一覧

供封休夕	最大荷重 Pmax(kN)		最大応答変位 δmax(mm)	
供訊体名 負側		正側	負側	正側
N-PD	-94.48	92.04	-24.82	47.22
WD-PD	-87.80	99.06	-27.16	46.27

図-7 N-PD 荷重変位関係

図-8 WD-PD 荷重変位関係

曲げひび割れが高さ230mmの欠陥部付近の北面 に発生し,2.90秒の負側載荷時には同じ高さに 曲げひび割れが発生した。その後,4.24秒時に 負側の最大応答変位-27.16mmを記録し,曲げひ び割れの上下方向には無数の縦に派生するひび 割れが観察された。5.03秒時には,正側の最大 応答変位+46.27mmを記録した。この時,高さ 230mmの欠陥部に沿って正・負側の曲げひび割 れがつながった(写真-4(b))。その後は応答 振幅20mm程度,0mmを中心とした振動となり, 13秒時程度で振動も安定した。

2体の供試体で異なる損傷結果となったのは 静的載荷実験と同様に途中定着部におけるフー プ筋比,欠陥部の有無が大きく寄与していると

(a) N-PD (b) WD-PD (c) 池端ら写真-4 準動的載荷実験終了時

考えられる。なお、図-9において損傷状態の 全く異なるNタイプとWDタイプの時刻歴応答挙 動が極めて類似しているのはたまたま両者の損 傷後の荷重-変位特性が図-5に示されるよう に類似しているからと考えられる。

軸方向鉄筋の降伏強度が実構造物と同等のも のを用いた既往の実験では,継手に欠陥がない 場合は急激なせん断破壊をしており実構造物の 倒壊状態が再現された^{1),2)}(写真-4(c))。この 場合には基部の曲げ耐力が大きいためにそれに 対応してせん断耐力が増加して作用したことに よるものである。

5. 考察

途中定着を有しフープ筋比の少ない既設橋脚 は大きな地震力に対してはせん断破壊を起こす 可能性がある。これに対し軸方向鉄筋に欠陥が あると耐力が上昇しないため損傷が欠陥部に集 中して,曲げ破壊のように粘り強い挙動となり, 結果として倒壊しないことを実験的に示すこと ができた。すなわち対象とした実橋脚は,鉄筋 接合部の欠陥が倒壊の原因ではないことを明確 に示すことができたと思われる。

6. 結論

本研究で得られた結論を以下に示す。 (1)静的載荷実験,準動的載荷実験により,対象 としたような曲げ耐力がせん断耐力を上回る ような設計のRC橋脚は軸方向鉄筋の継手に欠 陥が無い場合には上部の途中定着部に斜めひ び割れが集中してせん断破壊に至り,倒壊す る可能性があることが明らかにされた。一方, 継手断面内の40%の鉄筋が継手で接合されそ の継手に欠陥がある場合には,継手が破断す るとともに継手のある断面に曲げひび割れが 集中して連続鉄筋が降伏し,曲げ破壊型の粘 りのある挙動を示して倒壊を免れることが明 らかにされた。言い換えれば,鉄筋のガス圧 接部の破断は橋脚の倒壊をむしろ防ぐ結果と なったのである。

(2)動的映像記録化システムの導入により、準動 的載荷実験から得られたビデオ映像から、RC 円形断面橋脚の地震時挙動を実時間で画面上 に繰返し生起することが可能となり途中定着 部・欠陥部での損傷のメカニズムの相違を詳 細に観察することができた。

謝辞:実験の実施にあたり横浜国立大学の森下 豊氏ならびに落合剣人君に参加を頂いた。また, 供試体の製作においては,オリエンタル建設 (株)二井谷氏の多大な協力を得た。ここに関 係各位に謝意を表します。

参考文献

 1)池端信哉,足立幸郎,山口隆裕,池田尚 治:準動的載荷によるRC橋脚の地震被災挙動に 関する研究,コンクリート工学年次論文集, Vol.23, No.3, pp.1255-1260, 2001.6
 2) Adachi, Y., Ishizaki, H., Ikehata, S., Ikeda, S.: Verification of the Failure of Reinforced Concrete Piers Under the Near-Field Earthquake, *Proceeding* of the 1st fib Congress 2002, Vol.5, Session 6, pp.389-396, Oct. 2002

3)(財)鉄道総合研究所:1995年兵庫県南部地 震の地震動記録波形と分析(II),JR地震情報, No.23d, 1996.3