論文 PC連続ラーメン橋の損傷進展に関する解析的検討

濵本 朋久*1・松田 泰治*2・大塚 久哲*3・佃 友宏*4

要旨:一般に連続ラーメン橋は耐震性が非常に高い不静定構造物であるため,落橋させない という要求性能に対して橋梁全体系で崩壊に至るメカニズムを精度よく解明し耐震設計の 合理化を図る必要がある。そこで本研究では,動的応答解析を中心に連続ラーメン橋の損傷 進展から崩壊に至る過程に着目し,橋軸方向を対象に解析的検討を実施した。

キーワード:ラーメン橋,動的応答解析,静的解析,耐震設計

1.はじめに

1995年の兵庫県南部地震における道路橋の被 災経験を踏まえて,1996年および2002年に改訂さ れた道路橋示方書・同解説 耐震設計編^{1),2)} (以下,道示 と称す)では,地震時保有水平 耐力法が耐震設計として位置づけられ、橋の耐 震性能も規定された。連続ラーメン橋のように 地震時の挙動が複雑な橋梁については動的解析 に基づく耐震設計の照査が規定され,地震時保 有水平耐力法による設計計算例3)では連続ラー メン橋の終局状態を「想定した複数の塑性ヒン ジのうちいずれか一つが終局に達した時」を橋 梁全体系での終局状態と規定している。この規 定は等橋脚高を有する連続ラーメン橋に対して 橋脚が崩壊に至る目安となり得ると考えられる が、この規定を忠実に守るが故に、不等橋脚高 を有する連続ラーメン橋では橋脚の杭基礎に膨 大な耐力を要求するケースが生じている。また 既往の研究4)により,連続ラーメン橋の実務設

計における比較検討が報告されている。一般に 連続ラーメン橋は耐震性が非常に高い不静定構 造物であるため,落橋させないという要求性能 に対して橋梁全体系で崩壊に至るメカニズムを 精度良く解明し耐震設計の合理化を図る必要が ある。さらに実務設計では,静的な地震時保有 水平耐力法による耐震設計がレベル2地震動に 対して安全側の設計手法と考えられ,安全性の 判定結果では非線形特性を考慮した動的応答解 析による応答結果と大きな差異が生じるケース が多々見受けられる。

そこで本研究では,不等橋脚高を有する連続 ラーメン橋を対象に,地震時保有水平耐力法に よるプッシュオーバー解析(以下,静的解析と 称す)と時刻歴応答解析(以下,動的解析と称 す)における塑性ヒンジ部の損傷進展などに着 目し,連続ラーメン橋の橋軸方向を対象に解析 的検討を実施した。

図 - 1 解析対象橋梁

- *1 パシフィックコンサルタンツ(株)九州本社 第二技術部水構造グループ 工修 (正会員)
- *2 九州大学大学院助教授 工学研究院建設デザイン部門 工博 (正会員)
- *3 九州大学大学院教授 工学研究院建設デザイン部門 工博 (正会員)
- *4 九州大学工学部 建設都市工学科 (非会員)

2.解析条件

本検討は支間割りが対称である PC4径間連続ラーメン橋を対象とし た(図-1参照)。本橋梁の解析モ デルは,橋長299.00m,支間割 54.55+94.00+94.00+54.55m,橋脚高 はP1橋脚が24.50m,P2橋脚が 39.00m,P3橋脚が30.00mの不等橋脚 高を有するモデルとする。高橋脚の 応答が卓越する 種地盤上に建設さ れる橋とし,地域区分はA地域(地 域別補正係数:Cz=1.0),重要度区 分はB種の橋とする。また橋梁全体 系の破壊形態として,上部構造およ び基礎構造は降伏させずに橋脚の曲 げ破壊先行型とする。

解析モデルの材料特性は上部構造を全断面有 効時の線形部材で、はり要素とした。橋脚部の 材料特性は降伏剛性を有する非線形部材で、は り要素とした。ただし橋脚の上下端には塑性と ンジを考慮し,塑性ヒンジ領域の中央に非線形 回転バネを設けた。履歴特性は完全バイリニア 型のM - 特性(武田型)を設定した。橋脚の フーチング下端には動的変形係数を考慮した線 形の杭頭ばねを設けた。静的解析を行う際に は,地盤の変形を無視して橋脚のみの変形性能 に着目するため、橋脚下端を固定とした。また 初期断面力として上部構造の施工段階に生じる プレストレス2次力,クリープ等による不静定 力と橋梁自身の持つ自重を考慮した。図 - 2 に 検討解析時の初期状態における曲げモーメント 分布を示す。さらに解析モデルの質量は、節点 に集約した重量を重力加速度9.8m/sec²で除した 値とし,節点の自由度は水平2方法と回転を考 慮した。

動的解析ではニューマーク 法(=0.25) を用い,積分時間間隔は0.001秒とした。また共

図 - 3 入力地震動波形

振正弦波とレベル2地震動として道示 を参考 に強震記録を振動数領域で振幅調整した 種地 盤用の加速度波形(以下,標準波と称す)3波 (TYPE - -1,TYPE - -2,TYPE --3)を入力地震動として用いた。共振正弦波 の周期は固有値解析より得られた有効質量比の 卓越する1次モードの周期とした。検討に用い た入力地震動波形を図-3(a)~(d)に示す。モー ド減衰定数をひずみエネルギー比例型減衰で計 算する時に用いた各部材の減衰定数は,上部構 造:3%,橋脚部:5%,塑性ヒンジ部:2%,基礎構 造:20%である。解析ソフトには汎用構造解析プ ログラムTDAP を用いた。

- 3.解析結果
- 3.1 固有值解析結果

動的解析で使用する減衰は,固有値解析によ り以下の式で規定されるレーリー減衰[C]で評

価した。

(C) = (M) + (K)
ccに(C):減衰マトリクス
(M):質量マトリクス
(K):剛性マトリクス
, :係数

ここで,係数 , は橋脚,上部構造および 基礎構造部分にそれぞれ減衰定数hを定義し固 有値解析結果を基に算定されるモード減衰定数 から,有効質量比が卓越する1次モードと累積 有効質量比が100%となる38次モードを選択して 設定した。図-4にモード減衰を示す。

固有値解析結果を表 - 1 に示す。解析モデル では1 次モードの有効質量比が全体の約60%と なっており,一般に連続ラーメン橋のような構 造が複雑な橋梁は,橋軸方向において高次振動 モードの影響を無視できないものと考えられ る。また,10次モードにおける有効質量比が7% と1次モードの次に大きな値となっている。従っ て解析モデルでは,1次モード,10次モード応答 に与える影響が大きいと考えられる。図 - 5(a) ,(b)に1次と10次の主要モードを示す。

3.2 静的解析結果

静的解析では,上部構造ならびに各橋脚に対して,同一の水平力を漸増的に作用させた。また加震方向は,不等橋脚高を有するためP1 P3 方向に水平力を漸増させた場合とP1 P3方向に 水平力を漸増させた場合を考える。例としてP1 P3方向入力時における曲げモーメント分布を図-6に示す。震度は,上部構造ならびに各橋脚の 漸増した全水平力を上部構造ならびに各橋脚の 全重量で除した値とする。塑性ヒンジ部の降伏 順序,上部構造変位,降伏時における震度をま とめて表-2,図-7に示す。両ケースにおい てP1橋脚下端は最初に降伏に至る。P1橋脚下端 ではP1 P3方向入力時の方が先に降伏に至る。 逆に,P3橋脚下端ではP1 P3方向入力時の方が先 に降伏に至る。理由として,不静定力を考慮し

表-2 静的解析の降伏順序

		(P1 P3)			(P1 P3)	
	降伏順序	上部構造変位 (m)	震度	降伏順序	上部構造変位 (m)	震度
P1上端	2	0.185	0.278	2	0.237	0.373
P1下端	1	0.129	0.216	1	0.196	0.328
P2上端	6	0.512	0.449	6	0.528	0.447
P2下端	5	0.419	0.440	5	0.401	0.435
P3上端	3	0.336	0.405	4	0.265	0.395
P3下端	4	0.384	0.430	3	0.258	0.391

表 - 1 固有値解析結果

次数	固有振動数 (Hz)	固有周期 (s)	橋軸方向 有効質量比 (累積%)	減衰比
1	0.7370	1.3569	62	0.066258
2	1.2789	0.7819	63	0.045681
3	1.7708	0.5647	63	0.038465
4	2.6399	0.3788	67	0.044348
5	3.0874	0.3239	67	0.039652
6	3.7184	0.2689	70	0.069779
7	4.3081	0.2321	70	0.061958
8	4.5045	0.2220	75	0.081948
9	4.7133	0.2122	75	0.071737
10	5.5636	0.1797	82	0.105145

た初期断面力による曲げモーメントに対して, 当該橋脚では曲げモーメントを増加させる方向 に水平力が作用しているためと考えられる。さ らに,降伏順序は両ケースともP1橋脚,P3橋 脚,P2橋脚の順である。しかし,P3橋脚では橋 脚上下端で降伏順序に相違が認められる。これ は,初期断面力の影響がP1 P3方向に水平力を 作用させると,橋脚上端よりも橋脚下端に対し て損傷の進展を早めたためであると考えられ る。

3.3 動的解析結果

動的解析では,共振正弦波と標準波3波を入 力した時の最大応答塑性率を表-3(a)~(h)に示 す。共振正弦波は,塑性ヒンジ部が降伏に至る 際の応答を詳細に評価するために,最大入力加 速度の倍率 は100galを基準として0.5倍,0.75 倍,1.0倍,1.5倍,以下3.0倍まで変化させた。 また標準波は,最大入力加速度の倍率 を0.1~ 1.0倍まで変化させた。最大応答塑性率とは最大 応答回転角を降伏回転角で除した値である。

標準波入力時の結果(表-3(c)~(h))よ り,各橋脚の最大応答塑性率に余裕が生じてい るのは,設計上残留変位の照査などの要因から も橋脚の軸方向鉄筋量が決定されるためと考え られる。またこれらの結果より,想定した塑性 ヒンジ部が初めて降伏に至る倍率時での橋脚上 端応答値・降伏順序を表-4(a)~(d)に示す。

共振正弦波入力時の結果(表 - 4(a))より, P1 P3方向入力時において降伏順序はP1橋脚下 端,P1橋脚上端,P3橋脚下端,P3橋脚上端,P2橋 脚上端,P2橋脚下端の順となった。また,P1 P3 方向入力時においても前述と同様の順序となっ た。さらに各橋脚の降伏時における上部構造応

表 - 3 最大応答塑性率一覧

(a) 共振正弦波 (P1 P3方向入力時)

/sta	最大入力			最大応領	答塑性率		
倍率	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.5倍	50	0.680	0.879	0.323	0.329	0.491	0.554
0.75倍	75	0.928	1.781	0.469	0.458	0.642	0.707
1.0倍	100	1.439	2.884	0.594	0.558	0.763	0.827
1.5倍	150	2.929	4.466	0.783	0.741	0.947	1.014
2.0倍	200	3.850	5.580	0.909	0.881	1.382	1.673
2.5倍	250	4.840	6.588	1.016	0.990	2.096	2.388
3.0倍	300	5.607	7.403	1.448	1.240	2.598	2.868
3.0倍 (C)	300) TYF	<u>5.607</u> E -	<u>7.403</u> -1	1.448 (P1	 P3方向	 可入力	 時)
<u>3.0倍</u> (C) 倍率	300 TYF 最大入力	<u>5.607</u> E -	7.403 - 1	1.448 (P1 最大応答	<u>1.240</u> P3方向	 可入力	 時)
<u>3.0倍</u> (C) 倍率	300 TYP 最大入力 加速度(gal)	<u>5.607</u> 下-	7.403 - 1 P1下端	1.448 (P1 最大応? P2上端	1.240 P3方向 ^{答塑性率} P2下端	2.598 可入力 P3上端	<u>2.868</u> 時) _{P3下端}
3.0倍 (C) 倍率 0.1倍	300 TYF 最大入力 <u>加速度(qal)</u> 68.683	<u>5.607</u> 王 - P1上端 0.384	7.403 - 1 <u>P1下端</u> 0.507	1.448 (P1 最大応答 P2上端 0.168	1.240 P3方向 ^{客塑性率} P2下端 0.194	2.598 可入力 P3上端 0.327	<u>2.868</u> 時) <u>P3下端</u> 0.387
3.0倍 (C) 倍率 0.1倍 0.2倍	300 TYF 最大入力 <u>加速度(gal)</u> 68.683 137.366	5.607 E - P1上端 0.384 0.627	7.403 - 1 <u>P1下端</u> 0.507 0.809	1.448 (P1 最大応答 P2上端 0.168 0.342	1.240 P3方向 ^{§塑性率} P2下端 0.194 0.367	2.598 可入力 P3上端 0.327 0.524	2.868 時) P3下端 0.387 0.585
3.0倍 (C) 倍率 0.1倍 0.2倍 0.3倍	300 TYF 最大入力 加速度(gal) 68.683 137.366 206.049	5.607 产 - P1上端 0.384 0.627 0.865	7.403 - 1 0.507 0.809 1.268	1.448 (P1 最大応答 P2上端 0.168 0.342 0.508	1.240 P3方向 ^{整塑性率} P2下端 0.194 0.367 0.532	2.598 可入力 P3上端 0.327 0.524 0.709	2.868 時) P3下端 0.387 0.585 0.773

	200.040	0.000	1.200	0.000	0.002	0.700	0.110
0.4倍	274.732	1.179	2.305	0.642	0.666	0.861	0.926
0.5倍	343.416	1.915	3.418	0.778	0.782	0.999	1.135
0.6倍	412.099	2.810	4.566	0.936	0.893	1.314	1.560
0.7倍	480.782	3.774	5.735	1.189	1.020	1.718	2.015
0.8倍	549.465	4.786	6.923	1.659	1.361	1.998	2.314
0.9倍	618.148	5.803	8.085	2.195	1.794	2.188	2.509
1.0倍	686.831	6.782	9.183	2.730	2.248	2.698	2.658

(e) TYPE - -2 (P1 P3方向入力時)

位玄	最大入力			最大応答	答塑性率		
104	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.1倍	67.264	0.416	0.549	0.174	0.156	0.289	0.350
0.2倍	134.528	0.692	0.892	0.342	0.298	0.448	0.512
0.3倍	201.792	0.953	1.690	0.510	0.458	0.607	0.673
0.4倍	269.056	1.558	2.933	0.682	0.618	0.767	0.834
0.5倍	336.320	2.411	4.035	0.828	0.757	0.926	0.996
0.6倍	403.583	3.093	4.883	0.926	0.855	1.166	1.405
0.7倍	470.847	3.633	5.569	1.003	0.941	1.635	1.930
0.8倍	538.111	4.102	6.096	1.224	1.107	2.143	2.474
0.9倍	605.375	4.481	6.490	1.550	1.418	2.661	3.015
1.0倍	672.639	4.788	6.824	1.917	1.774	3.188	3.559

(g) TYPE - -3 (P1 P3方向入力時)

应求	最大入力			最大応領	§塑性率		
百平	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.1倍	73.633	0.411	0.545	0.163	0.173	0.318	0.368
0.2倍	147.267	0.682	0.885	0.319	0.324	0.507	0.547
0.3倍	220.900	0.942	1.685	0.477	0.475	0.695	0.726
0.4倍	294.534	1.480	2.898	0.620	0.617	0.871	0.893
0.5倍	368.167	2.154	3.835	0.741	0.740	1.044	1.091
0.6倍	441.800	2.806	4.481	0.856	0.850	1.449	1.560
0.7倍	515.434	3.388	5.037	0.964	0.955	1.963	2.096
0.8倍	589.067	3.858	5.488	1.118	1.124	2.510	2.659
0.9倍	662.701	4.394	5.950	1.349	1.436	3.052	3.221
1.0倍	736.334	4.959	6.913	1.564	1.718	3.487	3.671

(b) 共振正弦波 (P1 P3方向入力時)

位女	最大入力			最大応答	§塑性率		
百竿	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.5倍	50	0.683	0.881	0.323	0.328	0.489	0.552
0.75倍	75	0.931	1.778	0.472	0.461	0.647	0.711
1.0倍	100	1.435	2.906	0.593	0.553	0.756	0.821
1.5倍	150	2.912	4.504	0.777	0.744	0.969	1.040
2.0倍	200	3.967	5.563	0.924	0.877	1.404	1.647
2.5倍	250	4.640	6.485	1.092	1.013	2.070	2.406
3.0倍	300	5.441	7.444	1.389	1.280	2.646	2.991

(d) TYPE - -1 (P1 P3方向入力時)

位女	最大入力			最大応答	答塑性率		
百竿	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.1倍	68.683	0.435	0.572	0.181	0.168	0.294	0.353
0.2倍	137.366	0.731	0.939	0.355	0.325	0.459	0.517
0.3倍	206.049	1.005	1.944	0.530	0.497	0.623	0.682
0.4倍	274.732	1.814	3.291	0.709	0.671	0.787	0.846
0.5倍	343.416	2.763	4.457	0.858	0.820	0.952	1.015
0.6倍	412.099	3.515	5.339	0.964	0.929	1.236	1.476
0.7倍	480.782	4.104	6.047	1.099	1.049	1.713	2.046
0.8倍	549.465	4.535	6.541	1.463	1.362	2.241	2.646
0.9倍	618.148	4.888	6.932	1.893	1.736	2.792	3.257
1.0倍	686.831	5.178	7.257	2.346	2.133	3.356	3.869

(f) TYPE - -2 (P1 P3方向入力時)

位女	最大入力			最大応領	§塑性率		
百平	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.1倍	67.264	0.378	0.502	0.161	0.181	0.312	0.374
0.2倍	134.528	0.616	0.799	0.328	0.341	0.495	0.560
0.3倍	201.792	0.849	1.223	0.489	0.493	0.668	0.737
0.4倍	269.056	1.132	2.223	0.617	0.617	0.811	0.882
0.5倍	336.320	1.856	3.297	0.739	0.722	0.942	1.012
0.6倍	403.583	2.732	4.405	0.889	0.821	1.132	1.338
0.7倍	470.847	3.671	5.532	1.064	0.935	1.485	1.746
0.8倍	538.111	4.625	6.673	1.446	1.145	1.755	2.039
0.9倍	605.375	5.523	7.721	1.869	1.512	2.008	2.217
1.0倍	672.639	6.415	8.724	2.310	1.922	2.574	2.346

(h) TYPE - -3 (P1 P3方向入力時)

位或	最大入力			最大応領	答塑性率		
百辛	加速度(gal)	P1上端	P1下端	P2上端	P2下端	P3上端	P3下端
0.1倍	73.633	0.421	0.546	0.164	0.171	0.308	0.371
0.2倍	147.267	0.703	0.887	0.322	0.321	0.487	0.554
0.3倍	220.900	0.969	1.713	0.480	0.449	0.639	0.711
0.4倍	294.534	1.617	2.904	0.642	0.585	0.765	0.827
0.5倍	368.167	2.618	4.210	0.805	0.738	0.881	0.931
0.6倍	441.800	3.678	5.438	0.954	0.881	1.005	1.049
0.7倍	515.434	4.672	6.517	1.143	1.005	1.420	1.302
0.8倍	589.067	5.508	7.417	1.378	1.255	1.941	1.616
0.9倍	662.701	6.229	8.209	1.604	1.530	2.426	2.046
1.0倍	736.334	6.747	8,794	1.800	1.753	2,773	2,579

答変位においても,入力方向に依存しない傾向 がみられた。共振正弦波に基づく動的解析では 入力方向で降伏順序に相違が見られず,各橋脚 の降伏時における上部構造応答変位もほぼ一致 する。従って,共振正弦波以外の標準波におい ても同様の現象が生じ,降伏に至ると考えられ る。

標準波であるTYPE - 1入力時の結果 (表 - 4(b))より,両方向入力時での降伏順序 は共振正弦波入力時の結果とほぼ同様の傾向が 認められた。また,各橋脚部の降伏時における 上部構造応答変位も共振正弦波入力時とほぼ一 致した。P2橋脚で共振正弦波入力時と降伏順 序,降伏時上部構造応答変位に相違が生じるの は,共振正弦波は非線形1次モードで振動して いるのに対し,標準波は非線形高次モードの影 響と時刻歴により順次塑性ヒンジが発生したこ とで橋脚の剛性が低下し,連続ラーメン橋の橋 梁全体系が非線形モードで振動する影響と考え られる。

TYPE - -2, TYPE - -3入力時の結 果(表-4(c),(d))も,共振正弦波入力時の 結果と同様の傾向が認められる。TYPE - - 3のP1 P3方向入力時においてP3橋脚で降伏順序 に相違が認められる。これは,静的解析結果で確 認したのと同様に,不静定力による初期断面力を 考慮したためと考えられる。またP2橋脚で降伏順 序に相違が認められるのは,TYPE - 1入力 時でのP2橋脚における降伏順序,降伏時上部構造 応答変位が異なる理由と同様と考えられる。

3.4 損傷進展機構

損傷進展のメカニズムは,静的解析と動的解析 の比較に際して,動的解析で得られた応答加速度 の最大値を震度に換算して比較を行った。本解析 モデルの慣性力については橋脚部全質量が上部構 造質量の約43%であるため,橋梁全体系で大部分 の質量が上部構造に集中している。そこで,橋脚 上端の応答加速度を絶対応答加速度9.8m/sec²で 除した値を換算震度とした。それらの比較を図-8,9,10に示す。

静的解析と動的解析において,設計上最初に水 平力が集中するP1橋脚,次にP3橋脚,P2橋脚の順 に降伏する過程は一致する。また動的解析では, 橋脚降伏時における上部構造応答変位は,共振正 弦波,標準波のいずれのケースも静的解析とほぼ

表 - 4 塑性ヒンジ部降伏時における橋脚上端応答値

(a) 共振正弦波入力時降伏順序一覧表

					動的解核	Г		
				上部応答	上部構造	上部構造		
	(P1	P3)	降伏時刻	加速度	応答変位	変位絶対値	換算震度	降伏順序
	`	- /	(S)	(m/sec ²)	(m)	(m)		
	P1_	上端	2.750	-3.511	0.197	0.197	0.358	2
	P1	下端	2.744	-2.722	0.147	0.147	0.278	1
	P2_	上端	2.840	-6.154	0.395	0.395	0.628	5
	P2 ⁻	下端	1.378	-6.515	0.408	0.408	0.665	6
	P3_	上端	2.078	5.674	-0.303	0.303	0.579	4
	P3 ⁻	下端	3.546	4.623	-0.260	0.260	0.472	3
						-		
			廖伊時刻	上部応答	上部構造	上部構造		
	(P1	P3)	(2)	加速度	応答変位	変位絶対値	換算震度	降伏順序
			(5)	(m/sec ²)	(m)	(m)		
	P1	ト端	3.436	-3.707	0.204	0.204	0.378	2
	P1 ⁻	下端	3.414	-2.872	0.151	0.151	0.293	1
	P2	ト端	2.098	-6.431	0.393	0.393	0.656	5
	P2 ⁻	下端	2.140	-6.151	0.398	0.398	0.628	6
	P3_	上端	2.778	5.848	-0.309	0.309	0.597	4
	P3	下端	2.824	4.819	-0.263	0.263	0.492	3
1	<u>~)</u>	т	VDE		2 X +	咕咯什	順应-	_暫実
() [c)	T	YPE		2入力	時降伏	順序-	-覧表
() [c)	T	YPE	 			順序-	-覧表
(с) (Р1	T	YPE ^{降伏時刻}		2入力 動的解析 上部構造 応答恋位			
((P1	Т Р3)	YPE 降伏時刻 (s)	 上部応答 加速度 (m (soc ²)	2入力 動的解析 上部構造 応答変位	時降伏 上部構造 変位絶対値		
()	(P1	T P3)	YPE 降伏時刻 (s)	上部応答 加速度 (m/sec ²)	2入力 動的解析 上部構造 応答変位 (m) 0 206	時降伏 上部構造 変位絶対値 (m)	順序- ^{換算震度}	
	(P1		YPE 降伏時刻 (s) 6.546	上部応答 加速度 (m/sec ²) -3.993	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151	時降伏 上部構造 変位絶対値 (m) 0.206	順序 - 換算震度 0.407	
((P1 (P1 P1	T P3) 端端	YPE 降伏時刻 (s) 6.546 6.536 6.536	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151 0.359	時降伏 上部構造 変位絶対値 (m) 0.206 0.151 0.359	順序- 換算震度 0.407 0.306	
((P1 P1 P1 P2 P2		YPE 降伏時刻 (s) <u>6.546</u> <u>6.536</u> <u>6.674</u> 5 958	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151 0.359 -0.393	時降伏 上部構造 変位絶対値 <u>(m)</u> 0.206 0.151 0.359 0.393	順序- 換算震度 0.407 0.604 0.683	一 覧表 降伏順序 2 1 5 6
()	(P1 P1 P1 P2 P3	P3 端端端端端	YPE 降伏時刻 (s) <u>6.546</u> <u>6.536</u> <u>6.674</u> <u>5.958</u> <u>5.920</u>	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.9916 6.692 5.892	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151 0.359 -0.393 -0.299	時降伏 「 上部構造 変位絶対値 (m) 0.206 0.151 0.359 0.393 0.299	順序- 換算震度 0.407 0.306 0.604 0.683 0.601	一 覧表 降伏順序 2 1 5 4
()	(P1 P1 P1 P2 P2 P3 P3		YPE 降伏時刻 (s) <u>6.546</u> <u>6.674</u> <u>5.958</u> <u>5.920</u> <u>5.888</u>	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692 5.892 6.198	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286	時降伏 上部構造 変位絶対値 (m) 0.206 0.151 0.359 0.393 0.299 0.286	換算震度 0.407 0.306 0.604 0.683 0.601 0.632	一 覧表 降伏順序 2 1 5 6 4 3
((P1 P1 P2 P2 P3 P3	P3	YPE 降伏時刻 (s) <u>6.546</u> <u>6.536</u> <u>6.674</u> <u>5.958</u> <u>5.920</u> <u>5.888</u>	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692 5.892 6.198	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286	時降伏 上部構造 変位絶対 (m) 0.206 0.151 0.359 0.393 0.299 0.286	換算震度 0.407 0.306 0.604 0.683 0.601 0.632	一 覧表 降伏順序 2 1 5 6 4 3
	(P1 P1 P1 P2 P3 P3 P3		YPE 降伏時刻 (s) <u>6.546</u> <u>6.674</u> <u>5.958</u> <u>5.920</u> <u>5.888</u>	上部応答 加速度 (m/se ²) -3.993 -2.998 -5.916 6.692 5.892 6.198 上部応答	2入力 動的解析 上部構造 応答变位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286	時降伏 上部構造 変位絶対値 (m) 0.206 0.151 0.359 0.299 0.286 上部構造	換算震度 0.407 0.306 0.604 0.683 0.601 0.632	一 覧表 降伏順序 2 1 5 6 4 3
	(P1 P1 P1 P2 P3 P3 P3		降伏時刻 (s) 6.546 6.536 6.674 5.958 5.920 5.888 降伏時刻	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692 5.892 6.198 上部応答 加速度	2入力 動的解析 上部零位 0.206 0.151 0.359 -0.299 -0.286 上部構造 の 0.206 した 0.151 0.299 -0.286	時降伏 上部構造 変位絶対値 (m) 0.206 0.151 0.359 0.393 0.299 0.286 上部構造 値 (m) 0.206 0.359 0.299 0.286	換算震度 0.407 0.306 0.604 0.632 地質震度	一 覧表 降伏順序 2 1 5 6 4 3 路伏順序
	(P1 P1 P1 P2 P3 P3 P3 (P1	P3) 端端端端端 P3) 第	YPE 降伏時刻 (s) <u>6.546</u> <u>6.536</u> <u>6.674</u> <u>5.958</u> <u>5.920</u> <u>5.888</u> 降伏時刻 (s)	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692 5.892 5.993 5.993 5.993 5.892 5.992	2入力 動的解析 上部構造 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286 上部構造 (m)	時降伏 上部構造 愈位絶対 (10) 0.206 0.151 0.359 0.299 0.286 上部構造 (10)	順序 換算震度 0.407 0.306 0.604 0.603 0.602 換算震度	中 覧表 降伏順序 2 1 3 路伏順序
	(P1 P1 P1 P2 P3 P3 (P1 (P1		YPE 降伏時刻 (s) <u>6.546</u> <u>6.536</u> <u>6.674</u> <u>5.958</u> <u>5.958</u> <u>5.920</u> <u>5.888</u> 降伏時刻 (s) <u>5.910</u>	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692 6.692 6.198 上部応答 加速度 ² (m/sec ²) -3.388	 2入力 動的解析 上部構造位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286 上部構造位 (m) 0.197 	時降伏 上部構造 変位絶対値 0.151 0.359 0.393 0.299 0.286 上部構造値 変位絶対 0.197	順序 換算震度 0.407 0.604 0.663 0.601 0.632 換算震度 0.346	▶ 覧表 降伏順序 2 1 5 6 4 3 降伏順序 2
	(P1 P1 P1 P2 P3 P3 (P1 P1 P1 P1		YPE 降伏時刻 (s) <u>6.546</u> <u>6.536</u> <u>6.674</u> <u>5.958</u> <u>5.920</u> <u>5.888</u> 降伏時刻 (s) <u>5.910</u> <u>5.878</u>	上部応答 (m/sec ²) -3.993 -5.916 6.692 6.198 上部応答 (m/sec ²) -3.388 -2.468	2入力 動的解析 上部構造位 (m) 0.206 0.151 0.359 -0.299 -0.286 上部構造位 (m) 0.147 0.147	時降伏 上部構造 変位絶対値 0.206 0.151 0.359 0.299 0.286 上部機対 (m) 0.197 0.140	順序 換算震度 0.407 0.306 0.603 0.603 0.601 0.632 換算震度 0.346 0.252	ー覧表 降伏順序 2 1 5 6 4 3
	(P1 P1 P1 P2 P3 P3 P3 (P1 P1 P1 P1 P2		YPE 降伏時刻 (s) <u>6.536</u> <u>6.674</u> <u>6.536</u> <u>6.674</u> <u>5.958</u> <u>5.988</u> 降伏時刻 (s) <u>5.996</u>	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 -6.92 5.892 6.198 上部応答 (m/sec ²) -3.388 -2.468 -5.521	2入力 動的解析 上部構造 応答変位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286 (m) 0.197 0.140 0.361	時降伏 上部構造 変位絶対値 (m) 0.206 0.151 0.359 0.299 0.286 上部構造 変位(m) 0.197 0.140 0.361	順序 換算震度 0.407 0.306 0.604 0.683 0.601 0.632 換算震度 0.346 0.0563	→ 覧表 降伏順序 2 1 5 6 4 3 降伏順序 2 1 5
	(P1 P1 P2 P2 P3 P3 (P1 P1 P1 P1 P1 P2 P2 P2		YPE 降伏時刻 (s) 6.536 6.536 6.674 5.920 5.920 5.928 (s) 5.9210 (s) 5.910 5.910 5.910 5.910 5.910	上部応答 加速度 (m/sec ²) -2.993 -5.916 6.692 5.892 6.198 上部応答 加速度 ² (m/sec ²) -3.388 -3.388 -2.468 -5.521 -6.810	2入力 動的解析 応容变位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286 上部構造位 (m) 0.140 0.341 0.140	時降伏 上部構造 変位絶対値 0.206 0.151 0.359 0.393 0.299 0.299 0.299 0.299 0.299 0.298 上部構造 変位絶対値 (m) 0.140 0.361 0.414	順序 換算震度 0.407 0.306 0.604 0.604 0.603 0.632 換算震度 0.346 0.252 0.563 0.605 0.605	ー覧表 降伏順序 2 1 5 6 4 3 降伏順序 2 1 5 6 4 3 8 8 6 6 6
	(P1 P1 P2 P2 P3 P3 (P1 P1 P2 P3 (P1 P1 P2 P2 P2 P2 P2 P3		YPE 降伏時刻 (s) 6.546 6.536 6.674 5.920 5.920 5.888 降伏時刻 (s) 5.910 5.878 5.878 5.878	上部応答 加速度 (m/sec ²) -3.993 -2.998 -5.916 6.692 5.892 6.198 上部応答 加速度 (m/sec ²) -3.388 -5.521 -6.521 -6.5749	2入力 動的解析 上部構造位 (m) 0.206 0.151 0.359 -0.393 -0.299 -0.286 上部構造位 (m) 0.140 0.147 0.140 0.361 0.361 0.361 0.361	時降伏 上部構造 変位絶対値 0.206 0.151 0.359 0.299 0.286 上部構造 変位絶対値 (m) 0.197 0.140 0.361 0.361 0.298	順序 換算震度 0.407 0.306 0.604 0.604 0.604 0.632 0.632 0.632 0.646 0.632 0.632 0.646 0.632 0.635 0.563 0.587	ー 覧表 降伏順序 2 1 5 6 4 3 降伏順序 2 1 5 6 4 3 8 4 3 8 4 3 8 4 3 8 8 4 3 8 8 8 8 8 8 8 8 8

(b) TYPE - -1入力時降伏順序一覧表

				動的解析	T		
			上部応答	上部構造	上部構造		
	(P1 P3)降1大時刻	加速度	応答変位	変位絶対値	換算震度	降伏順序
	-	(5)	(m/sec ²)	(m)	(m)		
	P1上端	6.060	-3.569	0.197	0.197	0.364	2
	P1下端	7.432	-1.928	0.114	0.114	0.197	1
	<u>P2上端</u>	6.122	-5.939	0.369	0.369	0.606	5
	P2下端	6.146	-5.850	0.368	0.368	0.597	6
	P3上端	6.768	5.492	-0.311	0.311	0.560	4
	<u>P3下端</u>	6.774	4.813	-0.274	0.274	0.491	3
	1	1		1	1.40.000.00		r
		降伏時刻	上部心合	上部構造	上部構造		
	(P1 P3) (s)	加速度	心答变位	变位絶对值	換算震度	降伏順序
		(=)	(m/sec)	(m)	(m)		
	P1上端	6.800	-3.116	0.187	0.187	0.318	2
	P1 ト 端	6.660	-2.921	0.154	0.154	0.298	1
	P2 上端	6.142	5.956	-0.359	0.359	0.608	6
	P2 下 编	6.132	5.992	-0.359	0.359	0.611	5
	<u>P3上端</u>	6.080	5.180	-0.304	0.304	0.529	4
	P3ト端	6.138	4.267	-0.260	0.260	0.435	3
(c	т (Е	YPE	:	3入力	時降伏	順序−	-覧表
- [
- [動的解析	i		
			上部応答	<u>動的解析</u> 上部構造	上部構造		
	(P1 P3)	降伏時刻	上部応答 加速度	<u>動的解析</u> 上部構造 応答変位	上部構造 変位絶対値	換算震度	降伏順序
	(P1 P3)	降伏時刻 (s)	上部応答 加速度 (m/sec ²)	<u>動的解析</u> 上部構造 応答変位 (m)	上部構造 変位絶対値 (m)	換算震度	降伏順序
ŀ	(P1 P3) P1上端	降伏時刻 (s) 6.052	上部応答 加速度 (m/sec ²) -3.448	<u>動的解析</u> 上部構造 応答変位 (m) 0.199	上部構造 変位絶対値 (m) 0.199	換算震度 0.352	降伏順序 2
ŀ	(P1 P3) P1上端 P1下端	降伏時刻 (s) 6.052 6.038	上部応答 加速度 (m/sec ²) -3.448 -2.841	<u>動的解析</u> 上部構造 応答変位 (m) 0.199 0.148	上部構造 変位絶対値 (m) 0.199 0.148	換算震度 0.352 0.290	降伏順序 <u>2</u> 1
	(P1 P3) P1上端 P1下端 P2上端	降伏時刻 (s) 6.052 6.038 5.426	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629	動的解析 上部構造 応答変位 (m) 0.199 0.148 -0.387	上部構造 変位絶対値 (m) 0.199 0.148 0.387	換算震度 0.352 0.290 0.676	降伏順序 2 1 6
	(P1 P3) P1上端 P1下端 P2上端 P2下端	降伏時刻 (s) 6.052 6.038 5.426 5.382	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756	動的解析 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375	換算震度 0.352 0.290 0.676 0.689	降伏順序 <u>2</u> 1 6 5
	(P1 P3) P1上端 P1下端 P2上端 P2下端 P3上端	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607	<u>動的解析</u> 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375 -0.267	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267	換算震度 0.352 0.290 0.676 0.689 0.470	降伏順序 <u>2</u> 1 6 5 4
	(P1 P3) P1上端 P1下端 P2上端 P2下端端 P3上端 P3下端	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152	<u>動的解析</u> 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375 -0.267 -0.265	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265	換算震度 0.352 0.290 0.676 0.689 0.470 0.526	降伏順序 2 1 6 5 4 3
	(P1 P3) P1上端 P1下端 P2上端 P2下端端 P3上端 P3下端	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152	<u>動的解析</u> 上部構造 応答変位 (m) 0.199 0.199 0.148 -0.387 -0.375 -0.267 -0.265	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265	換算震度 0.352 0.290 0.676 0.689 0.470 0.526	降伏順序 2 1 6 5 4 3
	(P1 P3) P1上端 P1下端端 P2上端端 P2下端端 P3上端 P3下端	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152 上部応答	動的解析 上部構造 応答变位 (m) 0.199 0.148 -0.387 -0.375 -0.267 -0.265 上部構造	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265 上部構造	換算震度 0.352 0.290 0.676 0.689 0.470 0.526	降伏順序 2 1 6 5 4 3
	(P1 P3) P1上端 P1下端端 P2上端端 P3上端端 P3下端 (P1 P3)	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398 降伏時刻	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152 上部応答 加速度。	動的解析 上部構造位 (m) 0.199 0.148 -0.387 -0.375 -0.267 -0.265 上部構造位 応答変位	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265 上部構造 変位絶対値	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度	降伏順序 2 1 6 5 4 3 降伏順序
	(P1 P3) P1上端 P1下端端 P2上端端 P3上端 P3下端 (P1 P3)	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398 降伏時刻 (s)	上部応答 加速度 ⁽ (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152 上部応答 加速度 (m/sec ²)	動的解析 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375 -0.267 -0.265 上部構造位 (m)	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265 上部構造 変位絶対値 (m)	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度	降伏順序 2 1 6 5 4 3 降伏順序
	(P1 P3) <u>P1上端端端</u> <u>P2上端端端</u> P3上端端 (P1 P3) P1上端	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398 降伏時刻 (s) 5.320	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152 上部応答 (m/sec ²) -3.040	動的解析 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375 -0.267 -0.265 -0.265 上部構造 (m) 0.203	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.387 0.267 0.265 上部構造 変位絶対値 (m) 0.203	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度 0.310	降伏順序 2 1 5 4 3 降伏順序 2
	(P1 P3) P1上端端端端 P2上端端端端 (P1 P3) P3下端端 (P1 P3) P1上端端	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.420 5.398 降伏時刻 (s) 5.320 5.320 5.302	上部応答 加速度 (m/sec ²) -3.448 -2.841 -6.629 6.756 4.607 5.152 上部応答 加速度 (m/sec ²) -3.040 -3.2625	<u>動的解析</u> 上部構造 応答変位 (m) 0.148 -0.387 -0.375 -0.267 -0.267 -0.265 上部構造 応答変位 (m) 0.203 0.148	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.387 0.267 0.265 上部構造 変位絶対値 (m) 0.203 0.148	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度 0.310 0.268	降伏順序 2 1 6 5 4 3 3 降伏順序 2 1
	(PI P3) P1上下端端端端 P2上下端端端端 P3上下端端端端 (PI P3) 以下端端端端 (PI P3) 以下端端端端	降伏時刻 (s) <u>6.052</u> <u>6.038</u> <u>5.420</u> <u>5.398</u> 降伏時刻 (s) <u>5.320</u> <u>5.320</u> <u>5.320</u>	上部応答 加速度 (m/sec ²) -3.448 -2.841 -6.629 -6.756 4.607 5.152 上部応容度 (m/sec ²) -3.040 -2.6274	<u>動的解析</u> 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375 -0.265 上部構造位 (m) 0.203 0.148 0.382	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265 上部構造 変位絶対値 (m) 0.203 0.148 0.382	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度 0.310 0.268 0.2464	降伏順序 2 1 6 5 4 3 降伏順序 2 1 5
	(P1 P3) P1上端端端端 P2上端端端端 P3上端端端端 (P1 P3) P3下端端端 (P1 P3) P1上端端端端 (P1 P3) P1上端端端端	降伏時刻 (s) 6.052 5.426 5.382 5.398 降伏時刻 (s) 5.320 5.320 5.320 5.320 5.320 5.320 5.320	上部応答 加速度 (m/sec ²) -3.448 -2.841 6.629 6.756 4.607 5.152 上部応答 加速度 (m/sec ²) -3.040 -2.625 -6.274 -6.062	<u>動的解析</u> 上部構造 応答变位 (m) 0.199 0.148 -0.387 -0.375 -0.265 上部構造位 (m) 0.203 0.203 0.203 0.382 0.384	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.265 0.265 0.265 0.265 立絶対値 (m) 0.203 0.148 0.382 0.384	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度 0.310 0.268 0.640 0.641 0.619	降伏順序 2 1 6 5 4 3 降伏順序 2 1 5 6
	(PI P3) P3 P1上室端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端端	降伏時刻 (s) 6.038 5.426 5.382 5.398 降伏時刻 (s) 5.398 降伏時刻 (s) 5.320 5.320 5.322 5.322 5.322 5.322 5.322	上部応答 加速度 -3.448 -2.841 -6.756 4.607 5.152 上部応答 加速度 (m/sec ²) -3.040 -2.625 -6.062 -4.278	<u>動的解析</u> 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.267 -0.265 上部構造 応答変位 (m) 0.203 0.148 0.382 0.384 0.336	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.375 0.267 0.265 上部構造 変位絶対値 (m) 0.203 0.148 0.382 0.384 0.336	換算震度 0.352 0.290 0.676 0.689 0.470 0.526 換算震度 0.310 0.268 0.640 0.619 0.619 0.437	降伏順序 2 1 6 5 4 3 降伏順序 2 1 5 6 3
	(PI P3) P3 P1上下溢端端端端端 P3 P2上下当端端端 P3 P3上 P3 P3上 P3 P1上 P3 P3 P3 P1 P3 P3 P3 P1 P3 P3 P3 P3 P3	降伏時刻 (s) 6.052 6.038 5.426 5.382 5.426 5.398 5.398 5 .339 (s) 5.302 5.302 5.302 5.302 5.302 5.302 5.302 5.304 6.174	上部応答 (m/sec ²) -3.448 -2.841 -6.629 -6.629 -5.152 -5.152 上部応答 加速度 (m/sec ²) -3.040 -2.625 -6.274 -6.062 -4.278 -4.278	 動的解析 上部構造 応答変位 (m) 0.199 0.148 -0.387 -0.375 -0.267 -0.267 -0.266 -0.384 0.336 0.384 0.336 -0.268 	上部構造 変位絶対値 (m) 0.199 0.148 0.387 0.267 0.265 定位絶対値 (m) 0.203 0.203 0.384 0.382 0.384 0.336 0.268	換算震度 0.352 0.290 0.6676 0.689 0.470 0.526 換算震度 0.310 0.268 0.2640 0.619 0.437 0.457	降伏順序 2 1 6 5 4 3 3 降伏順序 2 1 5 6 3 4 4 3 4 3 4 5 6 5 4 3 5 6 5 6 6 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6

一致する。さらにP2橋脚における上部構造応答変 位に差異が認められる部分も存在するが,これ は連続ラーメン橋の橋梁全体系が非線形モード で振動する影響と考えられる。従って上部構造 応答変位は,静的解析による上部構造水平変位 とほぼ近い値を示すことが確認できる。換算震 度における差異については,橋梁全体系の慣性 力は橋脚躯体にも作用しているため,本検討で は上部構造に作用する慣性力のみを考慮したた めと考えられる。

4.まとめ

本稿では不等橋脚高を有する連続ラーメン橋 を対象に,静的解析と動的解析における結果の 相違点に着目し,橋軸方向について比較検討を 行った。その結果として本解析モデルの連続 ラーメン橋では,以下の点が解析的に確認でき た。

- ・動的解析結果では,共振正弦波と標準波の上 部構造応答変位は同様の傾向を示し,交番載荷 状態では入力方向に依存しない傾向が認められ た。
- ・橋脚高さが低いため最初に水平力が集中し, かつ損傷進展の起点となるPI橋脚から降伏状態 に達した。
- ・静的解析と動的解析の比較結果では,静的解 析の塑性ヒンジが発生する順序と動的解析の時 刻歴による塑性ヒンジが発生する順序がほぼ一 致し,各橋脚の降伏時における上部構造変位も ほぼ一致した。

今後は,不等橋脚高を有する連続ラーメン橋 を対象に,損傷進展に関するメカニズムに関し て,レベル2地震動に対する各橋脚の塑性ヒン ジ部が負担する水平力を明確にする必要があ る。また塑性ヒンジ部が降伏状態に至った後, 橋梁全体系での終局状態も明確にする必要があ る。

参考文献

1)日本道路協会:道路橋示方書・同解説 耐 震設計編,1996.12

2)日本道路協会:道路橋示方書・同解説 耐 震設計編,2002.3

3)日本道路協会:道路橋の耐震設計に関する

図 - 8 P1 P3方向入力時

図 - 9 P1 P3方向入力時

図 - 1 0 P1 P3方向入力時

資料, 1998.1

4)御園生,小倉,土田,永井,佐々木:不等 の高橋脚を有するコンクリートラーメン橋の耐 震設計に関する検討,第2回地震時保有耐力法に 基づく橋梁の耐震設計に関するシンポジウム講 演論文集, pp.121-128,1998.12,