論文 RM構造を用いた増設耐震壁に関する実験研究

中澤 敏樹*1・今西 達也*2・東 健二*3・安居 功二*4

要旨:既存のフレーム内に RM 構造による補強組積造の耐力壁を構築し,増設耐震壁として 機能させる耐震補強工法を開発した。本工法による補強性能を確認するために,RM 壁を組 み込んだ鉄筋コンクリート造フレームの載荷実験を行った。実験の結果,補強フレームの初 期剛性,曲げひび割れ時強度,せん断ひび割れ時強度およびせん断耐力は,RM 壁部分のプ リズム圧縮強度をコンクリート強度とみなすことによって,既存の評価式により評価出来る ことが確認できた。

キーワード:RM構造,増設耐震壁,アンカー筋比,耐震補強

1. はじめに

補強組積造(以下,RM構造)¹⁾は,鉄筋コン クリート造と同等の耐震性を有すると同時に, 高い耐久性と施工性を持つ構法である。筆者ら は,このRM構造による耐力壁を既存RC造建 物の増設耐震壁として用いることのできる工法 を開発するために,RM構造を対象とした要素 実験²⁾を行い,接合部の性状等について研究を 行ってきた。本報では,RM増設耐震壁の補強 性能を確認するために,実大のRM構造の増設 耐震壁を組み込んだRCフレームの載荷実験を 行ったので,その結果について報告する。

本実験の目的は,アンカー筋量が最大せん断 強度に及ぼす影響,RM 増設壁の耐力と変形性 状および破壊状況を確認することである。 2. 実験概要

2.1 試験体

試験体の一覧を表 - 1 に, 配筋詳細を図 - 1 に示す。試験体数は2体であり,実験因子はア ンカー筋量とした。試験体 LJ のアンカー縦筋は 3-D16 (ps=0.19%),試験体 HC は 7-D19 (ps=0.75%)とした。アンカー横筋は共通とし, 1-D16 (ps=0.15%)とした。外周フレームは両 試験体とも共通であり,柱はせん断破壊型,上 部梁は曲げ破壊型となるような設計とした。

壁板は実大の RM ユニットを目地幅 3mm の 薄目地工法によって組積したものであり,最上 段は半割したユニットを用いた。ユニット空洞 部には,鉄筋(縦 D16@400,横 D13@200)を 配し,内部に高流動モルタルを充填することに

表 - 1 試験体一覧

≒扰眛		柱		梁		壁		アンカー			
体名	断面	主筋	せん断 補強筋	断面	主筋	せん断 補強筋	壁厚	縦筋	横筋	縦筋	横筋
LJ HS	400 × 400	6-D22 (pt=0.73%) (pg=1.45%)	2-D10 @151 (pw= 0.24%)	350 × 600	上下 4-D22 (pt=0.81%)	2-D13 @111 (pw= 0.65%)	200	1-D16 @400 (pwv= 0.25%)	1-D13 @200 (pwh= 0.24%)	3-D16 (ps=0.19%) 7-D19 (ps=0.75%)	1-D16 (ps=0.16%)

*1 ㈱淺沼組 技術研究所建築構造研究室 課長 (正会員)

*2 ㈱松村組 技術研究所構造研究課 博士 (正会員)

*3 (株新井組 関西本店設計技術部 博士

*4 ㈱松村組 技術研究所構造研究課 課長 (正会員)

図 - 1 試験体形状および配筋

よって壁体を一体化した。RM 壁板とフレーム とが接する4周には,割裂補強筋としてはしご 筋D10@100を1段配筋した。目荒しの深さは, 5mm 程度とし,打継ぎ面に対する目荒らしの面 積は2/5 程度とした。

実験に用いた鉄筋の力学的特性を表 - 2 に, コンクリートおよびモルタルの力学的特性を表 - 3 に示す。表中の RM 組積体の圧縮強度は, 文献¹⁾に示されるプリズム圧縮強度である。

2.2 載荷方法

加力装置を図 - 2 に示す。試験体は下部スタ ブで固定し,加力は,柱頂部の左右のスタブに 0.175bDFc 相当(817kN,Fc は柱部コンクリー ト圧縮強度)の柱軸力を加えた状態で,試験体 上部のスタブの左右に取り付けた 1000kN アク チュエータを用いて行った。載荷履歴は,スタ ブに対する梁の水平変位から算定した層間変形

表 - 2 鉄筋の力学的特性

使用实行	な	廿匠	降伏強度	引張強度	ヤング係数
使用即位	1도	们員	(N/mm^2)	(N/mm^2)	$(\times 10^5 \text{N/mm}^2)$
柱梁主筋	D22	SD345	380	580	1.96
柱せん断補強筋	D10	SD295A	366	499	1.81
梁せん断補強筋 壁横筋	D13	SD295A	377	515	1.88
壁縦筋	D16	SD295A	356	496	1.97
アンカー筋	D16	SD345	403	604	1.94
	D19	SD345	390	581	2.03

図 - 2 載荷装置

角:R=1/1600,1/800で1回,R=1/400,1/200 および1/100で2回繰り返した。

計測は,部材角を変位計により測定した。また,はしご筋,アンカー筋,およびRM ユニットの主要な位置に歪みゲージを貼り付け,歪みの測定を行った。

表 - 3	コンクリートおよびモルタル
	の力学的特性

伟田郭位	廿母	圧縮強度	ヤング係数			
使用即位	的貝	(N/mm^2)	$(\times 10^4 \text{N/mm}^2)$			
下部スタブ	コンクリート	19.8	2.82			
柱、梁	ユンクリート	29.1	3.08			
RMユニット	王儿夕儿	<u> 94 9</u>	_			
内充填用		04.0				
壁	RM組積体*	33.8				
*DN畑銈休匠姫没庭はプリブル学校にトス						

RM組積体圧縮強度はプリズム試験による。

- 3. 実験結果
- 3.1 破壊性状

各試験体の破壊状況一覧を表 - 4 に,最終破 壊状況および荷重 - 変形関係を図 - 3 に示す。 両試験体とも層間変形角 R=1/1600 の時に梁軸 に直角方向のひび割れが発生した。その後,引 張側柱脚部に曲げひび割れ,壁にせん断ひび割 れが発生し,R=1/800 の時にせん断ひび割れが 伸展し剛性が低下した。

LJ は, R=1/400 の時に引張側の柱にせん断ひ び割れが発生し, R=1/200 の時に柱主筋が降伏 するとともに壁のせん断ひび割れが拡がり,壁 脚部で壁と梁のずれが顕著となった。R=1/100 においても耐力の低下はみられず,R=1/80 の時 に両柱にせん断ひび割れが生じると同時に,急 激に耐力が低下した。

HS は ,R=1/400 の時に壁のせん断ひび割れが 拡がるとともに,柱にせん断ひび割れが発生し た。LJ と異なり壁脚のずれはみられず,R=1/200 で柱のせん断ひび割れが拡がるとともに,柱脚 部で圧壊が生じ急激に耐力が低下した。

表 - 4 破壊状況一覧

	LJ		HS			
状況	荷重 (kN)	部材角	状況	荷重 (kN)	部材角	
а	427	1/7846	c	930	1/1378	
b	871	1/2615	b	-864	-1/1937	
с	-701	-1/1843	а	-1197	-1/877	
d	-1036	-1/779	d	1337	1/727	
e	1553	1/512	e	1556	1/437	
f	1631	1/455	f	1518	1/406	
g	1928	1/235	g	1885	1/205	
h	1893	1/204	j	1966	1/166	
i	1994	1/185	k	1717	1/132	
破壊状況の説明 a.接合部横ひび割れ						
b.柱曲げひび割れ , c.壁せん断ひび割れ						
d.梁せん断ひび割れ , e.柱せん断ひび割れ						
f.壁対角ひび割れ,g.ユニットウェブ破断						
h.壁下のずれが顕著,i .ユニット圧壊						
j . 圧縮側柱せん断破壊,k . 圧縮側柱圧壊						

試験体:LJ

試験体:HS

図 - 3 破壊状況および荷重 - 変形関係

- 3.2 各ひずみの検討
- (1) RM ユニット

RM ユニットのひずみを図 -5 に示す。LJ の最大ひずみが 200 µ 程度であるのに対し,HS では 350 µ 程度となっている。 これは,LJ では R=1/200 付近で 接合部がすべり出しており,そ れによって RM 壁体の負担せん 断力が小さくなったためである と考えられる。

(2) はしご筋

はしご筋のひずみを図 - 6 に 示す。アンカー量に関係なく, はしご筋段筋のひずみは小さく 最大で300 µ 程度となっている。 はしご筋縦筋のひずみは最大で 2000 µ 程度となっているが,降 伏ひずみには達していなかった。

(3) アンカー筋

アンカーのひずみを図 - 7 に, 壁とスタブの相対変位を図 - 8

図-8 壁とスタブとの相対変位

に示す。LJのアンカー筋のひずみは R=1/200 で 降伏ひずみに達しており,その時の相対変位は 約 2.0mm となっている。HSのアンカー筋のひ ずみは最大で 1000 µ 程度と小さく,せん断破壊 時の相対変位量は 1.0mm 程度となった。

本実験に先がけて行った接合部押し抜きせん 断実験の結果²⁾を図 - 9,10に示す。同実験 によると,接合部がすべり出す時の躯体と RM 壁との相対変位は 2mm 程度となった。また, すべり出し直後にアンカー筋が降伏した後,接 合部のせん断荷重は徐々に増大した。LJでもす べり出し以降の耐力は増大しており,これらの 結果と一致していた。

3.3 計算値と実験値との比較

表 - 5 に各構造特性に関する計算値と実験結 果との比較を示す。各構造特性の計算値は, RM 壁体を RC 壁に置き換えることによって, 既存の RC 増設壁の評価式³⁾によって算定した。 ここで,RM 壁体の強度にはプリズム圧縮強度 を用いた。算定に用いた評価式を以下に示す。

初期剛性:K

$$1/K = 1/K_B + 1/K_S$$
 (1)

・曲げひび割れ時耐力: M_c

$$M_C = 0.57 \sqrt{F_m} \cdot Z_e + \frac{N \cdot Z_e}{A_e}$$
(2)

・せん断ひび割れ時耐力: _WQ_{SC}

$${}_{W}Q_{SC} = (1 + \sigma_{0} / 15) \\ \frac{0.085kc(F_{m} + 50)}{M / (Q\ell) + 1.7} b_{e} \cdot j_{e}$$
(3)

表-5 計算値と実験値との比較表

試験	体	LJ	HS	
初期剛性	実験値	1.76^{*1}	1.65	
(×10 ²	計算値	2.07	2.07	
kN/mm)	実 / 計	0.85	0.80	
曲げ	実験値	510	964	
ひび割れ	計算値	549	549	
(kN)	実 / 計	0.93	1.54	
せん断	実験値	701	930	
ひび割れ	計算値	845	845	
(kN)	実 / 計	0.83	1.10	
対角	実験値	1631	1518	
ひび割れ	計算値	1352	1352	
(kN)	実 / 計	1.21	1.12	
	実験値	2147	2053	
	(5)式	1520 (1.41)*2	1520 (1.35)	
最大耐力	(6)式	1266 (1.70)	1664 (1.23)	
(kN)	破壊 モード	接合部すべり + せん断破壊	壁一体型 せん断破壊	
最大耐力時	罾間 変形角	1/138	1/202	
限界変	形角*3	1/66	1/125	

- *1 初期剛性は試験体に初めてひび割れが発生 する荷重の1/3 の時の剛性とした。
- *2 ()内の数値は実験値/計算値を示す。

*3 最大耐力の80%に耐力が低下した時の 変形角とする。 ・対角線ひび割れ時耐力: QDC

$$Q_{DC} = b_e \ell \sqrt{_c \sigma_t^2 + \sigma_0 \cdot_c \sigma_t} / 1.5$$
(4)

・一体打ち耐震壁としてのせん断耐力: Qsul

$$Q_{su1} = \left(\frac{0.053 p_{te}^{0.23} (Fc + 18)}{M / Q\ell + 0.12}\right)$$

 $0.85\sqrt{p_{se} \cdot \sigma_{wy}} + 0.1\sigma_0 b_e \cdot j_e$ (5) ・既存フレームと RM 壁板とが接合された耐震 壁の耐力: *Osu2*

 $Q_{su2} = Q_j + {}_p Q_c + \alpha \cdot Q_c \tag{6}$

- K_S :初期せん断剛性 = GA/ h (kN/mm)
- *F_m*: RM 組積体のプリズム強度
- Z_e,A_e:主筋を考慮した有効断面係数(mm³)

 および有効断面積(mm²)
- N, $_{0}$:軸力(kN)および軸応力度(N/mm²)
- kc:壁の長さによる補正値
- *b_e*, ℓ:壁厚(mm)および壁の全長(mm)
- *M/QD*: *M* と *Q* は危険断面に作用する曲げ モーメントとせん断力
- j_e :応力支点間距離($j_e = 0.8 \ell$)
- *c t*: コンクリートの引張強度(N/mm²)
- p_{te} : 引張側柱の等価引張鉄筋比(%)
- *F_c*:壁体とフレームとのコンクリート強度の平均強度 (Fc=32N/mm²)
- *p_{se}*:等価横筋比(%)
- _{wv}: 横筋の降伏強度(N/mm²)
- Q_i :水平部アンカー筋のせん断耐力の和
- $_pQ_c: 柱頭のパンチングシア耐力$
 - :低減係数(柱せん断破壊の場合 =1.0)
- $Q_c: 柱のせん断耐力$

LJ,HS の初期剛性はほぼ一致し,実験値が計 算値を僅かに下回った。LJの曲げひび割れ時お よびせん断ひび割れ時耐力の計算値は実験値に 比ベ小さくなっているが,HS では計算値は実 験値を安全側に評価できた。対角ひび割れ時耐 力については,LJ,HS ともに実験値と計算値は 比較的よく一致した。 最大耐力の計算値は,LJは(6)式,HSは(5)式 によって決定する。これらの値に対して,実験 値と計算値との比は,LJで1.70,HSで1.41と なった。LJは最終的には両側柱がせん断破壊し たが,接合部の性状からすべり破壊をともなっ た破壊形式であると判断される。また,HSに ついては,壁が周辺フレームと一体として挙動 していると考えられ,破壊モードは壁と柱が一 体としたせん断破壊であると判断される。以上 より,LJの最大耐力は(6)式の接合部の破壊によ る終局せん断耐力により定まり,HSは(5)式の 一体打ち壁としての終局せん断耐力により定ま ることになり,破壊モードと実験結果は一致し ていると考えられる。

4. まとめ

本実験の結果より以下の知見を得た。

- (1) 破壊モードが一体打ち壁としてのせん断破 壊となる試験体の各種耐力は,RM 壁部分 のプリズム圧縮強度をコンクリート強度と みなすことによって,既存のRC 増設壁の 評価式により精度よく評価出来た。
- (2) アンカー筋が少なく,破壊モードが接合部 破壊となる試験体では,曲げおよびせん断 ひび割れ時耐力実験値が計算値を下回った。

参考文献

- アールエム建築推進協議会:中層 RM 構造 設計指針・同解説, 1994
- 今西達也ほか:RM 構造を用いた耐震補強 工法に関する研究(その1,2),日本建築 学会大会学術講演梗概集,C-2,pp.1037-1040,2002.8
- 3) 日本建築防災協会:既存鉄筋コンクリート
 造建築物の耐震改修指針・同解説,2001

謝辞

本実験は,RM 耐震補強工法研究会(㈱淺沼 組,㈱新井組,㈱松村組)において実施された ものである。関係各位に感謝の意を表します。