論文 高軸力部材を有する地中 RC 構造物の地震被害分析

松本敏克*1·大友敬三*2·入江正明*3·池澤市郎*4

要旨: 阪神・淡路大震災で被災した神戸高速鉄道大開駅の地震被害分析を解析的に実施した。大開駅の中柱は高軸力を受ける部材であり,その特性を考慮して,中柱の変形性能を静的な材料非線形解析を用いて詳細に検討した。また,地盤・構造物の連成系に対して, 非線形性を考慮した地震応答解析を実施するとともに,変形性能や耐荷性能の観点から, 構造物の崩壊機構を評価した。

キーワード:地中 RC 構造物,高軸力部材, せん断耐力,破壊モード,非線形動的解析

1. はじめに

筆者らは,阪神・淡路大震災で被災した鉄筋 コンクリート構造物の被害分析を通じて,構造 物の耐震性能照査に用いる解析手法の精度の検 証とその適用性を検討している¹⁾。神戸高速鉄 道大開駅は極めて大きな損傷を受けた構造物の 一つである。これまで,大開駅を対象とした被 害分析は多数行われており,中柱のせん断破壊 や圧縮破壊により,頂版を支持するという中柱 の機能を喪失し,構造系の崩壊に至ったことが 明らかとなってきた²⁾。

大開駅の中柱は,小断面であるにもかかわら ず土被りによる大きな上載荷重を受けており, 高軸力となっている。本論では,その特性に着 目して中柱の変形性能を把握した。そして,当 該地点の工学的基盤に相当する位置での観測地 震波を用いて,地盤・構造物連成系の非線形動 的解析を実施し,変形性能や耐荷性能の観点か ら,構造物の崩壊機構を評価することとした。

2. 対象構造物の概要

大開駅の崩壊部分の構造は,図-1 に示すよ うな1層の2連ボックスラーメン構造であり, 約5mの土被りを有している。また,奥行き方 向に3.5mの間隔で中柱が配置されている。

*1	株式会社ニュージェック	技術開発部	工修	(正会員)
*2	財団法人電力中央研究所	地盤耐震部	工博	(非会員)
*3	ジャパン・ザイペックス構	未式会社 技術	 「新	(非会員)
*4	株式会社ニュージェック	技術開発部	(非:	会員)

表-1 大開駅中柱の構造諸元

寸法	B40cm×D100cm×H382cm		
引張鉄筋量	88.6cm ²		
(引張鉄筋比)	(2.6%)		
せん断補強筋量	4.5cm ²		
(せん断補強筋比)	(0.13%)		
コンクリート圧縮強度	38.7N/mm ²		
(設計基準強度)	(24.5N/mm^2)		
鉄筋降伏強度	318N/mm ²		
(許容応力度)	(143N/mm^2)		

中柱の諸元は**表**-1 に示すとおりである。主 筋として 32mm の丸鋼が用いられており,引張 鉄筋比は 2.6%と通常の地中 RC 構造物の部材に 比して大きくなっている。また,帯鉄筋として 9mm の丸鋼が 350mm 間隔で配置されている。 常時の軸方向応力は, 11.4N/mm²と普通コンク リートの設計基準強度の約 1/2 程度にも達して おり,高い軸力レベルにあることがわかる。

3. 部材の変形性能への軸力の影響

対象とする中柱は高軸力の影響により,一般 部材と限界状態が異なることが予想される。こ のため,部材の変形性能を解析的に把握するこ ととした。とくに,中柱にせん断破壊が生じて 構造物が崩壊したと指摘する事例があることか ら,せん断破壊に関する軸力の影響に着目した。

3.1 設計指標から見る中柱の破壊モード

中柱のせん断スパンは比較的長く, a/d=5.6 (>5.5)となっている。過去の研究によれば, 表-2 に示すように, 破壊モードは僅差で曲げ 破壊型と判定されるも, 基本的にはせん断破壊 型(とくに斜め引張破壊型)との遷移領域にあ るものと解釈できる。

一方,曲げ・せん断耐力比(V_{yd}/V_{mu})は1.05 であり,僅差で曲げ破壊型と判定されるが,地 震時においては,主筋降伏後の荷重繰り返しに よりせん断耐力が低下することが知られており, せん断破壊に至る可能性がある。

また,主筋の鉄筋比は 2.6%と大きめであるこ とから付着割裂破壊が懸念される。しかし,対 象構造物では丸鋼が用いられており,付着抵抗 が小さいが故に,付着割裂破壊に至る可能性は 小さいものと考えられる。以下,せん断破壊と しては斜め引張破壊を想定するものとする。

このように,設計指標の観点からは,中柱は, 曲げ破壊先行型/せん断破壊先行型のどちらに なるかについては,明確に区別できない状況に あると考えられる。

3.2 プッシュ・オーバー解析による検討

中柱を対象として,材料非線形性を考慮した 有限要素解析手法を用いて,プッシュ・オーバ 一解析を実施した(図-2参照)。RC要素の材 料構成則は岡村・前川のモデル⁴⁾とした。また, 軸力の影響を把握するために,軸力のない場合 の解析も行った。

図-3に水平荷重と中柱の変形角(中柱上下

表-2 せん断スパン比と破壊モードの関係

梁部材の分類	破壊モード	せん断スパン比 (a/d)
細長い梁 (両者の中間) ディープビーム	曲げ破壊 斜め引張破壊 せん断圧縮破壊	5.5以上 2.5~5.5 1.0~2.5
		文献 3) より一部抜粋

図-2 プッシュ・オーバー解析モデル

図-3 中柱の荷重-変位曲線

表-3 中柱下端部の損傷履歴(軸力比0.3)

変形角	損傷事象
0.005	主筋の圧縮降伏が見られる
0.009	主筋の引張降伏が見られる
0.010	補強筋の降伏が見られる
0.012	圧縮縁の平均軸ひずみが 3500μに達する
	(かぶりコンクリートの圧縮破壊の懸念)
0.013	荷重が最大耐荷力を示す
0.023	圧縮縁の平均軸ひずみが 10000μに達する
	(かぶりコンクリートの剥落の懸念)

端間水平変位/中柱小断面部長さ)との関係を 示す。軸力0の場合は、大変形時においても耐 荷力を維持しており、典型的な曲げ破壊型とな っている。大開駅中柱の軸力レベル(実強度と の比0.30)の場合は、変形角が0.01で最大耐 荷力に達した後に耐荷力を維持するも、変形角 0.02 あたりでの荷重が低下する。その低下量は 大きいが, せん断破壊と判断できるほど荷重低 下は急激ではないと考えられる。

中柱の損傷履歴は,表-3 に示すように,高 軸力の影響により初期段階にもかかわらず主鉄 筋の圧縮降伏がみられ,変形角 0.01 程度で主鉄 筋が引張降伏した後,変形が進展しないうちに 圧縮縁の節点間の平均的な軸ひずみが 3500 μ を超え,その間に補強筋も降伏したことがわか った。また,荷重が最大耐荷力点に達した時点 とも符合している。損傷度合いは釣合破壊およ びせん断破壊に近い状況になっていると考えら れる。

中柱のひび割れ性状は、図-4に示すように、 部材軸直角方向ひび割れから斜めひび割れへと 移行し、最終的には、軸力が大きいが故に部材 軸方向のひび割れが卓越するに至った。

中柱下端部の損傷部分について、図-5 に示 すように、変形角 0.02 あたりではコア部分のせ ん断ひずみも急伸しており、せん断破壊の様相 を見せた。しかし、かぶり部分の軸方向ひずみ も同時に伸展しているので、曲げ破壊の様相も 呈していると考えられる。

以上,設計指標や数値解析結果からは,破壊 モードについては明確な区別ができない状況に あった。しかし,高軸力になるほど最大耐荷力 が向上するも,ポストピーク域の荷重低下量も 大きくなっており,柱部材の脆性的な挙動が解 析的に示されたと考えられる。

4. 構造物の地震被害分析

構造物の動的挙動を把握するために,地盤・ 構造物連成系としてモデル化し,地盤および構 造部材の非線形性を考慮した FEM による地震 応答解析を実施した。

4.1 解析条件

地盤を平面ひずみ要素,構造物をはり要素で モデル化し,底面粘性境界,側方粘性境界を用 いた。図-6 に解析モデルを示す。解析条件の 詳細は以下のとおりである。

(1) 地盤条件

図-6 地盤・構造物連成系の解析モデル

地盤の速度構造や物性は既往の研究 ⁵と同一 とした。地盤の初期物性を表-4 に, せん断剛 性低下率と減衰定数のひずみ依存特性を図-7 に示す。GL-39.4m 以深にせん断波速度 V_s =500m/sec 程度の大阪層群が存在すると仮定し, この層の上面を工学的基盤と考え, モデル底面 とした。表層の土質材料の非線形性は、R-Oモデルにより表現し、大ひずみ領域の地盤の応 カーひずみ履歴を精度よく表現するために、 $G/G_0 \sim \gamma$ 、 $h \sim \gamma$ 曲線上で、1%ひずみ時の G/G_0 、 h を参照して非線形パラメータを設定した。層6については線形弾性体としてモデル化した。

(2) 構造条件

RC 部材の非線形性はトリリニア型の $M-\phi$ 曲線(武田モデル)を用いることとした。各勾 配は,ひび割れ,鉄筋降伏,終局の各特性点を 結ぶものとして定義し,コンクリート標準示方 書[構造性能照査編]の鉄筋,コンクリートの 応カーひずみ曲線を用いて算定した。図-8 に 解析に用いた $M-\phi$ モデルの一例を示す。なお, 隅角部には剛域を設け,側壁のホーム下・中柱 上下端部の断面急拡大部分は,密な配筋状況も 勘案して,弾性要素として扱った。

(3)入力地震動

入力地震動は、大阪層群上面における地震波 に相当すると考えられるポートアイランドの地 中 GL-83.0m における観測波を、時間領域で分 離した入射波 E を用い⁶,底面粘性境界に 2E 波として入力した。図-9に入力地震動を示す。

4.2 地盤の変形状況

図-10は最大変形図である。礫層との境界面 (GL-17.4m)を境に,表層地盤が大きく変形し ており,地表面変位は 30cm 程度である。1次 のせん断変形モードが卓越しているように思わ れる。また,構造物の変形は地盤変形に追随し ている様子が伺える。地盤のせん断ひずみも同 様の傾向を示しており,側方の砂層は 5%前後 のひずみとなっている。

4.3 構造物の損傷状況

図-11 は部材の鉄筋降伏の状況を示してい る。鉛直部材の上下端部と水平部材の側壁に近 い部分で鉄筋降伏を生じている。水平部材と鉛 直部材が接合するすべての隅角部で塑性ヒンジ が形成されているので、構造系全体としての残 存剛性は小さくなっており、図-10に示したよ うに、構造物の変形が地盤変形に追随すること

表-4 大開地点の地盤の初期物性⁵⁾

地 層 区 分	深度 (GL.m)	土質	単位体積 重量 <i>γ</i> (kN/m ³)	せん断波 速度 Vs (m/sec)	せん断 弾性係数 G ₀ (N/mm ²)	ポアソン 比 ν
層 1	2.1	シルト	19.0	140	38.0	0.333
層 2	5.2	砂質土	19.0	140	38.0	0.488
層 3	8.4	砂質土	19.0	170	56.0	0.493
層 4	11.5	粘性土	19.0	190	70.0	0.494
層 5	17.4	粘性土	19.0	240	112.0	0.490
層 6	39.4	礫	20.0	330	222.0	0.487
基盤	-	礫	21.0	500	535.0	0.470

図-7 地盤材料のひずみ依存特性 5)

図-8 部材の非線形特性

図-9 解析モデルの入力地震動

を裏付ける結果となった。図-12は発生せん断 力に対してせん断耐力が不足する箇所を示して いる。中柱の上下端部がそれに該当している。

図-13 には中柱下端部の断面力履歴を示し ている。曲げおよびせん断に関する破壊基準も 同時に示している。破壊基準の算定には耐力式 の安全係数をすべて1とした。曲げについては 終局破壊(圧縮縁のコンクリートひずみが3500 μ)に至っている。ほぼ釣合破壊の状態にあり, 引張鉄筋が降伏すると同時に圧縮縁のコンクリ ートも破壊するという脆性的な挙動となること が予想される。曲げモーメントは既に頭打ちの 状態になっているので、これ以上の損傷の程度 をこの指標で表現するには無理があり,変形状 況を確認する必要がある。図−14にM- φの履 歴を示す。降伏曲率に対して、最大曲率は 12 倍程度であり、中柱の下端部の塑性化が進展し ていることがわかる。せん断については、2つ の破壊基準を示している。これらは、コンクリ ート標準示方書の耐力式、および、比較的高軸 力下(設計基準強度の40%程度)での適用性が 確認されている建築分野の修正荒川式である。 断面力の履歴は両方の破壊基準を超えており, せん断破壊に達していることが確認された。

図-15 に水平層間変形角の時刻歴を示す。中 柱の最大変形角は 0.04 程度である。中柱は t=5.7sec には変形角 0.01 を越えており,側壁の 損傷に対して先んじると同時に,変形が集中す る傾向にある。建築物 ⁷⁷や原子力設備 ⁸⁹の地中 RC 構造物では,条件にもよるが,0.01 程度の 変形角を変形限界の安全側の目安としているこ と,また,プッシュ・オーバー解析結果(図-3 参照)においても,変形角 0.02 を超えたあたり で耐荷力が急激に低下していることから,中柱 の破壊により構造系全体が崩壊する可能性があ ることを示している。

5. おわりに

本論では, 阪神・淡路大震災において大きな 損傷を受けた高軸力部材を有する地中 RC 構造

図-11 塑性ヒンジの生成状況

図-14 M-φの履歴(中柱下端部)

物の地震被害分析を行った。とくに、当該地点 の工学的基盤に相当する位置での観測地震波を 用いて、地盤・構造物連成系の非線形動的解析 を実施し、高軸力下での変形性能や耐荷性能の 観点から、構造物の崩壊機構の評価を行った。 その結果、以下のことが明らかになった。

- (1)当該地点における地盤は、観測地震波の入力 により、せん断ひずみが 5%前後にも達する ほど、非常に大きな変形を受けたとものと考 えられる。また、構造物の挙動は地盤変形に 追随し、中柱の変形角は 0.04 程度にも達した と考えられる。また、すべての隅角部に塑性 ヒンジが発生し、構造物全体の残存剛性が低 下していた。
- (2)中柱の変形性能は、既往の研究や高軸力の影響を考慮したプッシュ・オーバー解析結果を 参考にすると、変形角にして 0.01~0.02 程度 であり、それを超える大変形が中柱には生じ ていたものと考えられる。
- (3)中柱の耐荷性能は、せん断については耐力が 不足しており、曲げについては釣合破壊の状 態にあったと考えられる。すなわち、せん断 /曲げの破壊モードの明確な区別は困難であ ったが、脆性的な破壊であったことが確認さ れた。
- (4)側壁に比して中柱に変形が集中しているこ とが確認された。そして、中柱の大きな損傷 が発端となり、構造系全体が崩壊するに至る ことが解析的に確認された。

今後は、部材の破壊挙動の観点から、より詳 細に崩壊機構を分析するとともに、鉛直地震動 の影響や、入力地震波形の影響等を勘案して、 分析を進めることが必要であると考えている。

謝辞

本研究においては,土木学会コンクリート委員会阪神・淡路大震災被害分析小委員会の委員 の方々には多くの助言をいただいた。また,防 災科学技術研究所地震防災フロンティア研究セ ンターの酒井久和研究員には,ポートアイラン

ドの基盤面地震動をご提供をいただいた。同研 究センター末冨岩雄研究員,日本大学中村晋助 教授には,当該地点の地盤応答解析にあたって 貴重な助言をいただいた。関係各位に深甚な謝 意を表する次第である。

参考文献

- 1) 土木学会:コンクリート技術シリーズ第 49
 号,阪神淡路大震災の被害分析に基づくコン クリート構造物の耐震性能照査方法の検証, pp.277-299,2002.12
- 2) 土木学会: 阪神・淡路大震災調査報告第5巻, 1999.8
- 3) 吉川弘道:鉄筋コンクリートの解析と設計, 丸善, pp.129, 1995.6
- 4) 岡村甫,前川宏一:鉄筋コンクリートの非線
 形解析と構成則,技報堂出版, pp.27-60, 1991.5
- 5) 矢的照夫,梅原俊夫,青木一二三,中村 晋, 江嵜順一,末富岩雄:兵庫県南部地震による 神戸高速鉄道・大開駅の被害とその要因分析, 土木学会論文集,No.537, pp.303-320, 1996.4
- 6)酒井久和,澤田純男,土岐憲三:ポートアイ ランドにおける時間領域での基盤入力地震動 の推定,土木学会論文集,No.612, pp.373-378, 1999.1
- 7)日本建築学会:鉄筋コンクリート造建物の靱 性保証型耐震設計指針(案)・同解説,1997
- 8) 土木学会:原子力発電所屋外重要土木構造物の耐震性能照査指針・同マニュアル,2002.5