論文 RC 造を併用した木質ハイブリッド構造試設計建物の立体非線形解析

田尻 清太郎^{*1}·塩原 等^{*2}·小谷 俊介^{*3}

要旨:木造とRC造を複合化した木質ハイブリッド構造のうち,平面中央部分がRCコア, 外周部分が木造骨組の試設計建物を考え,固有値解析,弾性解析,時刻歴解析を行い,構 造特性の把握を行った。解析では木造床のせん断剛性,木造骨組の接合部剛性を変化させ た。取り扱った試設計建物について,水平力の大部分をRCコアで負担すること,捩れ剛 性が小さく捩れモードが卓越すること,RCコア部分の柱に引張力が生じること等が明ら かとなった。

キーワード:木質ハイブリッド構造, RC センターコア,木造骨組

1. はじめに

現在,国土交通省総合技術開発プロジェクト 「木質複合建築構造技術の開発」において,木 質ハイブリッド構造に関する技術開発及び普及 促進が行われており¹⁾,その一環として平面内 に木造と RC コアを設け,それらが協力して地 震力に抵抗する木質複合構造の構造性能の検討 が行われている。

木質複合構造の一般社会への普及は,木質構 造の新たな産業基盤の発掘,木材を基盤とする 地域産業の活性化,二酸化炭素の削減,地球温 暖化防止等に貢献することとなる。

しかし,木造と RC 造の複合構造においては, 強度・剛性の偏在,木造床の低いせん断剛性, 木造接合部の低い剛性, RC 造と木造架構の応 力伝達など,その動的挙動は複雑であり,十分 な検討が必要である。

そこで、本研究では平面中央部分が RC コア、 外周部分が木造骨組である RC センターコアタ イプの木質ハイブリッド構造試設計建物を考え、 立体モデルに対して、固有値解析、弾性解析、 接合部のガタを時刻歴解析を行うことにより、 その構造特性の検討を行う。

2. 試設計建物

2.1 建物概要

本研究で取り扱う試設計建物は、平面中央部 分が RC コア、外周部分が木造骨組の RC セン ターコアタイプの建物である。形状は地上9階 建てと地上5階建ての2種類を考え、建物名を それぞれ CC9F, CC5F とする。CC9F の平面図・ 軸組図を図-1に示す。

2.2 使用材料·材料特性

本建物の使用材料及び使用部位を以下の(1) ~(3)に,材料特性を表-1に示す。

- (1) 鉄筋コンクリート Fc24: RC 造部分の柱・ 梁・床,基礎ばり
- (2) 集成材 E120-F330:木造部分の柱・梁
- (3) 構造用合板:木造部分の床

なお, **表**-1 の γ は単位体積重量[kN/m³], *E* はヤング係数[GPa], *E*」は部材軸直交方向のヤ ング係数[GPa], *G* はせん断弾性係数[GPa]を表 す。また, *1 は「鉄筋コンクリート構造計算規 準・同解説」²⁾の(5.1)式より算出, *2 は「木造 軸組工法住宅の許容応力度設計」³⁾の樹種デー ター覧表より抜粋, *3 は「木質構造設計規準・ 同解説」⁴⁾の 405.4 より算出した。

- *1 東京大学大学院 工学系研究科 修士課程 (正会員)*2 東京大学大学院 工学系研究科 助教授 工博 (正会員)
- *3 東京大学大学院 工学系研究科 教授 工博 Ph.D. (正会員)

2.3 部材断面

本建物の各部材の断面形状を**表-2** に示す。 なお,表中の *b* は幅[mm],*d* はせい[mm],*t* は 厚さ[mm]を表す。

3. 解析手順

3.1 解析モデル

本建物を以下の(1)~(7)に従ってモデル化し, 構造解析ソフト SAP2000⁵⁾を使用して,各種立 体解析を行った。解析モデルを図-2に示す。

- 木造, RC 造の柱, 梁を骨組要素, 木造床, RC 床をブレース置換とする。
- (2) 木造柱と木造梁の接合部,木造梁とRC造 柱の接合部において,梁端に回転ばねを挿入 する。また,木造柱脚と基礎梁の接合部にお いて,木造柱脚部分に回転ばねを挿入する。 なお,これらの回転ばねの回転剛性は,文献 ⁰より 8×10³[kNm/rad]と仮定する。ただし, 梁端の回転ばねの鉛直方向軸まわりの回転剛 性は0とする。
- (3) 木造床, RC 床とも剛床仮定を用いず, ブ レース置換によりモデル化する。なお, ブレ ースの断面積は式(1)により算定する。

$$A_B = \frac{G}{E} \frac{t(h^2 + l^2)^{3/2}}{2hl}$$
(1)

表-1	使用材料の材料	特性
-----	---------	----

材料	γ	Ε	E_{\perp}	G
鉄筋コンクリート	24	24.52 ^{*1}	-	10.22
集成材	6	11.76 ^{*2}	0.47^{*3}	0.75*3
構造用合板	6	-	-	-

部	材	材料	b	d	t
柱	C1	鉄筋コンクリート	700	700	-
	C2	集成材	500	500	-
梁	G1	鉄筋コンクリート	500	800	-
	G2	集成材	171	650	-
床	S1	鉄筋コンクリート	-	-	150
	S2	構造用合板	-	-	24

表-2 各部材の断面

ここで、 A_B : ブレース断面積[m²]、G: せん断弾性係数[N/m²]、E: ヤング係数[N/m²]、t: 床厚[m]、h,l: 床の幅、奥行[m]

ただし、木造床のせん断弾性係数には、木 造床の中でも剛性の高い値の、床倍率3に相 当するみかけのせん断弾性係数 36.75× 10⁶[N/m²]を用いる。また、木造床よりせん断 剛性の大きな木造フレーム+RC 床について も考え、そのみかけのせん断剛性は文献⁷¹よ り、木造床の30倍の値と仮定する。なお、前 者を柔床、後者を堅床モデルと名付ける。

- (4) 基礎梁底部でピン支持とする。
- (5) 直線部材の質量は,部材の両節点に 1/2 ず つ分配し,床の質量は,支持節点に支配面積 に比例して分配する。
- (6) 各部材の材料特性,断面形状は表-1,表 -2の値を用いる。
- (7) 柱,梁は自重のみ,床,外壁,内壁,屋根は表-3に示す固定・積載荷重を考慮する。 なお,表中の()内の数値は,堅床モデルとした場合の値を表す。

3.2 解析条件

CC9F, CC5F のそれぞれについて、以下の(1)
~(4)の解析を表-4 に示す6種類のモデルについて行う。ここで、剛接、半剛接、ピン接合は材端回転ばねの回転剛性がそれぞれ、無限大、8×10³[kNm/rad],0のモデルである。なお、(3)、(4)は半剛節のモデルのみ解析を行った。また、RC 造部分は弾性とした。

(1) 固有値解析

式(2)に示す有効質量係数の1次からn次までの累積値がX方向,Y方向とも90[%]を超える 次数まで固有値を求める。

 $p_{xn} = (f_{xn})^2 / M_x, \quad p_{yn} = (f_{yn})^2 / M_y$ (2)

$$f_{xn} = \phi_n^T m_x, \quad f_{yn} = \phi_n^T m_y \tag{3}$$

ここで, p_{xn}, p_{yn} : X,Y 方向の n 次有効質量係数, f_{xn}, f_{yn} : X,Y 方向の n 次刺激係数, M_x, M_y : X,Y 方 向の質量(拘束されていない質量), ϕ_n : n 次振 動モード形状($\phi_n^T M \phi_n = 1$), m_x, m_y : 単位加速度 当たりの加速度荷重, M: 質量マトリクス

表-3 固定・積載荷重

部位	固定荷重[kN/m ²]	積載荷重[kN/m ²]		
		地震用	骨組用	
RC 床	4.2	0.8	1.8	
木造床	0.6(2.37)	0.8	1.8	
木造外壁	0.79	-	-	
木造内壁	0.49	-	-	
屋根	0.35	-	-	

表-4 解析モデルの種類

	剛接	半剛接	ピン接合
柔床	RjNrf	SrjNrf	PjNrf
堅床	RjRf	SrjRf	PjRf

(2) 静的弹性解析

ベースシア係数 0.2 で、Ai 分布に従う水平力 を X 方向に作用させる。なお、固有周期は固有 値解析から得られる 1 次固有周期の値を用いる。 この荷重条件名を STATX とする。

(3) 線形時刻歷解析

最大速度を 0.5[m/s]に規準化した El Centro NS(1940), 神戸海洋気象台 NS(1995)(以下, ELX, KBX)をX方向に作用させ,線形時刻歴解析を 行う。なお,固有値解析により求めた全モード を用い,各モードのモード減衰を 0.05 とする。

(4) 非線形時刻歷解析

(3)と同じ地震波を X 方向に作用させ, 非線形 時刻歴解析を行う。木造接合部のガタをモデル 化するため, 材端回転ばねを非線形ばねとし, その特性は回転角 1/500[rad]までは荷重を負担 せず, それ以上の回転角の場合, 線形時と同じ 回転剛性であるとする(図-3参照)。

4. 解析結果と考察

4.1 固有モード

各解析ケースとも、1 次は捩れモード、2 次は 並進モードとなった。これは、水平剛性の大き な RC コアが平面中央部に位置していることに より、捩れ剛性が小さくなっているためだと考 えられる。このため、質量分布の偏り等によっ て外力の作用位置が剛心から離れる場合、捩れ 振動を生じる可能性がある。

ここで, CC9F 半剛接の RF における1次,2 次モード形を図-4 に示す。

4.2 木造部分・RC 造部分の最大層間変形角

木造床のせん断剛性は RC 造床に比べて非常 に小さく剛床仮定が成立しないので,各平面フ レームの変形に大きな差を生じることが予想さ れる。そこで,CC9F,CC5F に STATX を作用 させた場合の RC 造部分,木造部分における各 層の最大層間変形角を図-5 に,RC 造部と木造 部の各層の最大層間変形角の比を図-6 に示す。

各層の最大層間変形角についてはいずれの解 析モデルの RC 造部分,木造部分とも,第2層

図-5 木造・RC 造部分の各層最大層間変形角

の最大層間変形角が最大で,上層ほど,その値 は小さくなる傾向を示した。

また,図-6より,柔床より堅床の方が,木 造部分と RC 造部分の最大層間変形角に差がな い、木造部分の接合部剛性が大きい方が木造部 分と RC 造部分の最大層間変形角に差がない、 最上層では木造部分と RC 造部分の最大層間変 形角に大きな差を生じることがわかる。

4.3 RC 造部分の各層層せん断力分担率

本試設計建物では木造部分に入力する水平力 の大部分を RC コアに負担させることを想定し ている。そこで, CC9F, CC5F に STATX を作 用させた場合の RC 造部分における各層の層せ ん断力の分担率を図-7に示す。

CC9F, CC5F とも柔床, 堅床によらず, RC 造部分が分担するせん断力の割合はお互いに近 い値となった。なお, 木造部分の接合部が半剛 接・ピン接合のモデルの場合は 96[%]以上, 剛 接のモデルの場合は 85~92[%]の層せん断力分 担率となった。

4.4 木造・RC 造接合部の応力

木造部分に生ずる水平力が RC 造部分を介し て地面に伝達されるためには,木造部分と RC 造部分の接合部における応力伝達が重要となる。 そこで,木造部分の接合部が半剛接の CC5F に STATX を作用させたとき,RF において木造梁・ 床と RC 造柱の接合部に木造梁・床が及ぼす直 応力とせん断力の分布を図-8 に示す。ここで, 直応力は接合部に対して RC コアと垂直方向に 入力する力を表し,せん断力は接合部に対して RC コアと平行方向に入力する力を表すものと する。直応力は,RC コアを引っ張る向きの力 を正とし,せん断力は,RC コアを時計回りに 回そうとする向きの力を正とする。

柔床の場合,木造部分の水平力は主に直応力 によって RC コアに伝達されたが,堅床の場合, 直応力とせん断力の両方によって RC コアに伝 達されていた。また,RC コアの隅角部には他 の接合部よりも大きな応力が生じた。

4.5 RCコアにおける柱の軸力

塔状比の大きな建物では水平力作用時に柱に 引張力が生じる場合がある。本建物は大部分の 水平力を負担する RC コア部分の塔状比が大き いため注意が必要である。そこで, CC9F, CC5F

について, STATX, ELX, KBX 作用時に Y4 通 り 1Fの RC 造の柱に生じる軸力の最大値と最小 値を図-9 に示す。ここで, 軸力は引張力を正 とする。

STATX 作用時には RC コア内の外側の柱, ELX, KBX 作用時には X6 通り以外の柱に引張 力が生じた。また,塔状比の大きな CC9F の方 が CC5F より大きな引張力を生じた。

4.6 ガタが RC 造柱せん断力に及ぼす影響

木造骨組では接合部のガタが建物全体の応答 に少なからず影響を与える。そこで、木造部分 の接合部が半剛接の CC5F について、ELX、KBX 作用時の RC 造柱の X 方向のせん断力について、 非線形応答と線形応答の比を図-10 に示す。

RC 造柱の X 方向せん断力は,柔床・堅床の 種類,地震波の種類によって,非線形応答と線 形応答の場合で違いがあるが,ガタを考慮した 場合は,ガタがないと仮定した場合より最大で 9[%]程度大きくなった。

5. まとめ

今回解析を行った RC センターコアタイプの 試設計建物について,以下のことが明らかとなった。

- (1) 剛性の大きな RC コアが平面中央部分に存 在することにより, 捩れ剛性が小さくなり, 捩れモードが卓越した。
- (2) 建物に作用する水平力のRCコアによる分 担率は、木造床のせん断剛性より木造部分の 接合部の剛性の影響が大きく、剛接の場合で 85~92[%]、半剛接・ピン接合の場合で96[%] 以上となった。
- (3) RC コアで大部分の水平力を負担しており, RC コアの塔状比が大きいため,柱に引張力 が生じた。
- (4) 木造部分に生じる水平力は、木造床のせん 断剛性が小さい場合、RC コアに垂直に働く 直応力によって主に伝達され、せん断剛性が 大きい場合、RC コアに垂直に働く直応力と RC コアに平行に働くせん断力の両者により 伝達された。
- (5) RC コアの隅角部には大きな応力が生じた。
- (6) 回転角 1/500[rad]まで荷重を負担できない ガタを考慮した場合の RC 造柱の X 方向せん 断力は、ガタがないと仮定した場合より最大 で 9[%]大きくなった。
- (7) 木造部分の床のせん断剛性が小さいと,木 造部分の最大層間変形角は RC 造部より大き

くなる。

参考文献

- 例えば、建設省建築研究所、財団法人日本建築センター:建設省総合技術開発プロジェクト 木質複合建築構造技術の開発平成 11 年度報告書,2000.3
- 日本建築学会:鉄筋コンクリート構造計算規 準・同解説, p.39, 1999.11
- 財団法人 日本住宅・木材センター:木造軸 組工法住宅の許容応力度設計, p.412, 2002.6
- 日本建築学会:木質構造設計規準・同解説, pp.180-181, 1999.4
- Edward L. Wilson : Three Dimensional Static and Dynamic Analysis of Structures, Computers and Structures, Inc., Nov.1999
- 財団法人 日本住宅・木材センター:通直集 成材を用いたラーメン構造の設計法, pp.86-87, 1996
- 河合直人,岡部実:木質複合建築構造技術の 開発-床システムの面内せん断性能-,日本建 築学会大会学術講演梗概集,pp.317-318,2002.8