論文 不陸修正材を有する炭素繊維シート補強 RC はりの補強性能解析

鴨谷 知繁*1・森川 英典*2・吉田 隆浩*3

要旨:不陸修正材を有する炭素繊維シートとコンクリートの付着試験から,シートとコンク リートの付着構成則を導出し,2次元 FEM 解析を用いて炭素繊維シート補強 RC はりの補強性 能解析を行い,曲げ載荷試験結果と比較した。その結果,本解析手法を用いてシート補強 RC はりの補強性能を妥当に評価できることがわかった。また,本解析手法において,付着構成 則に不確定性を考慮し,モンテカルロシミュレーション解析を行うことで,シートとコンク リート間の接着界面状態に不確定性を有するシート補強 RC はりの補強性能を解析的に評価 した。

キーワード:不陸修正材, RC はり,炭素繊維シート, FEM 解析,不確定性

1. はじめに

昨今,曲げ補強が必要なコンクリート構造物 を補強する工法として炭素繊維シート補強工 法が注目されている。本工法において合理的な 補強設計を行うためには、様々な条件によって 発生する炭素繊維シート(以下,シート)とコ ンクリートの接着界面状態の相違によって,補 強性能が大きく影響を受ける¹⁾²⁾ということを 適切に評価することが必要であると考えられ る。そこで,本研究ではシート施工時に用いら れる不陸修正材(以下,パテ)に注目し,パテ を有するシートとコンクリートの付着試験か ら,シートとコンクリートの付着構成則を導出 し,2次元 FEM 解析を用いてシート補強 RC は りにおける補強性能解析³⁾を行い,同様のシー トとコンクリートの接着界面状態を有する曲 げ載荷試験結果と比較した。また,本解析手法 において,付着構成則に不確定性を考慮し,モ ンテカルロシミュレーション解析を行うこと で,シートとコンクリート間の接着界面状態に 不確定性を有するシート補強 RC はりの補強性 能を解析的に評価した。

2. シートとコンクリートの付着試験

2.1 試験概要

付着試験供試体の概略図を図 - 1 に示す。本 試験供試体は,土木学会「連続繊維シートとコ ンクリートとの付着試験方法(案)」⁴⁾に準拠し, 供試体は,断面が100×100mm,全長300mmの コンクリートブロックを2つで1対とした。中 心軸には引張荷重伝達用に軸を一致させた2 本のM16の鋼ボルトをあらかじめ配置した。シ ートは,幅50mm,長さ480mmのものを用い, 定着長さを200mmとして供試体両面に貼り付 けた。試験区間は,試験供試体の中央から片側 一方とした。試験区間と対称の側には,定着の

*1 神戸大学大学院自然科学研究科建設学専攻 博士課程前期課程 (正会員) *2 神戸大学助教授 工学部建設学科 工博 (正会員)

*3 西日本旅客鉄道㈱ 工修 (正会員)

ために幅 200mm のシートをコンクリートブロ ック周方向に接着することとし,この区間のシ ートはく離を防止した。また,試験体中央部に はコンクリートブロックの角欠けを防止するた めビニールテープを貼付して,非付着区間を設 けた。

2.2 シート接着方法

全国上下水道エポキシ工事事業協会が示して いる炭素繊維シート補強工法⁵⁾や阪神高速道路 公団 ⁶⁾などが示しているように実施工ではプラ イマーをコンクリート表面に施工した後に,パ テを施工し、シートを貼付けて補強する方法を とっていることが多い。よって本試験ではこれ と同様な施工方法で作成した供試体で評価する ことが望ましいと考え,シートの貼付け方法は 以下の通りとした。コンクリートは打設後,約 2週間湿布養生を施した後,約3日間,気中に 放置し、コンクリート表面をディスクサンダー により研磨し、プライマーを塗布する。プライ マーの乾燥後,パテの塗布面積と塗布厚さを制 御するため所定の位置に所定の厚さまで貼重ね たガムテープを貼付け,パテを塗布し,1週間 養生する。その後接着樹脂の面積を制御するた め,所定の位置にガムテープを貼付け樹脂の下 塗りを施し,シートを貼付け含浸させ,脱泡口 ーラーで脱泡した後,上塗りを施す。その上に 離型シートをかぶせ,表面を均一に整え1週間 養生させ,試験を行った。なお,プライマーを 2回塗布したものについては,1度塗布し,指触 乾燥させた後,2回目を塗布した。用いた材料 の性質は表 - 1,表 - 2,表 - 3にそれぞれ示 した通りであり,表-1に示した値はシートに 樹脂を含浸硬化させた状態で行った引張試験結 果である。

2.3 付着試験要因

表 - 4 に付着試験要因を示す。シート層数は 全て1層とした。パラメータは,プライマー塗 布回数(1回2回),パテ塗布厚さ(1mm,2mm), 接着樹脂の弾性率(高弾性率,低弾性率),コン クリート強度(標準強度:26N/mm²,高強

表 - 1 炭素繊維シートの性質

接着樹脂 の種類	繊維目付 (g/m ²)	設計厚さ (mm)	引張強度 (N/mm ²)	引張弾性率 (kN/mm ²)	破断ひずみ ^(%)
低弾性率	300	0.167	3.98×10^{3}	252.72	1.58
高弾性率	300	0.167	4.51×10^{3}	252.58	1.82

表 - 2 パテの性質

圧縮強さ(N/mm ²)	圧縮弾性率(N/mm ²)
71.9	5.18 × 10 ³

表 - 3 接着樹脂の性質

接着樹脂	圧縮強さ	圧縮弾性率	引張強さ	引張弾性率
の裡頬	(N∕mm⁵)	(N/mm ⁻)	(N∕mm²)	(N∕mm⁺)
高弾性率	92.8	3.20×10^{3}	50.9	3.65×10^{3}
低弾性率	-	1.70×10^{3}	_	-

表 - 4 付着試験要因

供試体名 プライマー 塗布回数		パテ塗布 厚さ(mm)	接着樹脂 弾性率	コンクリー ト強度
F1	1	1	高	標準
F2	2	1	高	標準
F3	1	2	高	標準
F4	1	1	高	低
F5	1	1	高	高
F6	1	1	低	標準

度:35N/mm²,低強度:20N/mm²)を考慮した。

2.4 測定項目および載荷方法

測定項目は,荷重,試験供試体中央部の開口 変位,シートひずみ,破壊形式とした。開口変 位については,シートを接着した2面に配置し たクリップゲージにより測定を行った。また, シートひずみについてはシート中央の表面にひ ずみゲージを15mm間隔で配置し,測定を行っ た。これらの結果から各供試体の付着性能を評 価した。載荷方法は,供試体に埋設した鋼ボル トを介し,引張力を与えた。

2.4 試験状況

付着試験供試体における試験状況は以下の様 であった。コンクリートブロックに埋め込んだ 鋼ボルトに引張力を与えることで,シートに引 張力を与えていくと,次第に付着試験供試体の 引張剛性が低下していき,供試体中央部から 徐々にシートと一体化したパテとコンクリート の界面においてはく離破壊が進展していき,全 面はく離破壊に至った。

2.5 付着力-相対変位関係の導出

付着試験より得られたシートひずみ分布より,

付着力-相対変位関係を導出する。シートとパテ は一体となってはく離することから,シートの 付着応力を,次式を用いて算出した。

$$\tau(x) = (E_f \cdot t_f + E_p \cdot t_p) \cdot \frac{d\varepsilon_{cf}(x)}{dx}$$

ここで, (x) : 付着応力 E_f , E_p : シートおよびパテの弾性係数 t_f , t_p : シートおよびパテの塗布厚さ $_{cf}(x)$: シートのひずみ

付着力は付着応力分布を積分し,シートの幅 を乗じることにより算出した。また相対変位は, シートとコンクリートとの剛性の差を考慮して, コンクリートを剛体と仮定し,シートひずみを シート端部より積分し算出した。図-2にシー トはく離開始時以前の付着力 相対変位関係の 履歴を示す。

3. シート補強 RC はりの補強性能解析

3.1 付着構成則の導出

図 - 3に付着力-相対変位関係とシートひず み分布との相互関係を示す。(a)に示すように, 試験結果から求めた付着力-相対変位関係は, A 点, B 点で勾配の変わるトリリニアで近似で きる。(a)のトリリニアモデルの原点から A 点 までの過程, A 点から B 点までの過程, B 点か ら C 点までの過程はそれぞれ, (b)に示すシー トひずみ分布の曲線 a までの過程(シート中央 部のひずみ値が最大値に収束するまで増大す る過程),曲線 a から曲線 b までの過程(シー ト中央部のひずみの増大は微少であるが、ひず み値が大きく発生する領域が増大する過程), 曲線 b から曲線 c までの過程(はく離が発生し 進展していく)過程と対応している。こ のモデルを FEM 解析における個々の要 素のはく離条件とする際には、付着力が 一定となった時点である(a)の B 点で要 素としてはく離破壊と判定することとす る.これより,(a)において原点から B 点までのバイリニア型の付着力-相対変 位関係を,シート接着面積で除すことで

平均化し,付着応力-相対変位関係として付着

図 - 3 付着力-相対変位関係とシートひずみ分布 の相互関係

構成則とした。図 - 4 に付着構成則の一覧 を示す。図-4に示す付着構成則は,土木 学会の「連続繊維シートを用いたコンクリ ート構造物の補修補強指針」⁷⁾に示された 求め方から得られるバイリニアモデルと比 較して,破壊エネルギーにおいてほぼ等価 であることを確認した。また得られた最大 付着応力の値は 1.0N/mm²~1.2N/mm²であ リ,この値は, RC はりの実験結果と解析 結果が合致したとして李ら,劉ら⁸⁾が用い ている局部付着強度の値、それぞれカット オフ型で 2 N/mm², バイリニア型で 1.5 N/mm²に対して,若干小さいものとなって いる。 60

50

40

30

20

10

٥

3000

2500

1500

(1)かずみ(1) 2000 0

荷重(kN)

3.2 解析概要

図 - 5 に解析モデルを示 す。解析モデルは比較対象と したシート補強 RC はり曲げ 載荷試験供試体¹⁾を想定した ものであり,断面が 150× 150mm,長さが 1400mm の RC はりで,幅 75mm,長さ 1100mm のシートを接着樹脂 により供試体下面に接着した 供試体である。解析モデルは、 対称供試体であるため,片側 のみをモデル化して、スパン 中央断面を軸方向に拘束した。 また,コンクリートを平面応 力要素,鉄筋要素を線要素と

し,コンクリート要素と引張鉄筋要素の接触節 点において,付着を考慮したバネ要素を導入し ている。さらに,はり下面に貼り付けたシート 要素を軸力のみを伝える棒要素でモデル化し、 コンクリート要素と繊維シート要素との接触節 点において,付着を考慮したバネ要素を導入し ている。また、各要素の構成則を図 - 6 に示す。 コンクリート要素については,圧縮側はトリリ ニア型でモデル化した。引張側については,土 木学会コンクリート標準示方書〔構造性能照査

d)シートひずみ分布 (最大荷重時)

供試体中央からの距離(mm)

図 - 7 解析精度検証

編〕⁹⁾に示されている引張軟化モデルを用いて いる。鉄筋要素については完全弾塑性型でモデ ル化する。降伏ひずみ値は鉄筋の引張試験より 求めた降伏応力を弾性係数 200kN/mm² から逆 算して求め,1590 µ とした。コンクリートと引 張鉄筋との付着を表すバネについては完全弾性 型とする。また,シートについては,引張破断 時まで弾性的で降伏点が存在しないことから, 弾性 - 破断型とする。また, シートとコンクリ ートとの間の付着構成則は,図-4で示したモ

デルを用いる。

3.3 解析精度検証および解 析結果

図 - 7 に F2 の接着界面状態 を有する,シート補強 RC はり 補強性能解析結果を示し,これ より本解析手法の妥当性を評価 する。荷重-中央たわみ関係,荷 重-中央引張鉄筋ひずみ関係に おいて解析値,実験値¹⁾ともほ ぼ同等の値を示している。破壊 モードにおいても実験結果同様 はく離破壊となった。本解析は 分散ひび割れモデルであるため, 実験結果におけるひび割れの局 所化の影響を表現できない。そ のために,はく離破壊が発生し た範囲のシートひずみ値が一定 となって表現され、シートひず

み分布において,載荷試験結果より小さな値を 示す傾向にあるが,載荷試験結果を再現してい ると考えられる。これらより本解析手法の妥当 性が示されていると考えられる。

表 - 5 に F1 から F6 のそれぞれのシート接着 界面状態を有するシート補強 RC はりの解析結 果を示す。いずれも本解析手法によって載荷試 験結果を精度良く再現している。ただし,シー トはく離時中央たわみにおいては,必ずしも載 荷試験結果を精度良く再現できているとは言え ない。この原因としては,実験において,測定 誤差の可能性とシートはく離時の中央たわみの ばらつきが大きいことが考えられる。

4. シート接着界面に不確定性を有するシ ート補強 RC はりの補強性能評価

4.1 不確定性を考慮した付着構成則

本研究で構築した付着構成則に以下のような 方法で不確定性を導入した。図 - 8 に示すよう に付着構成則の折れ曲がる点の相対変位を U1, 端点の相対変位を U2,折れ曲がるまでの傾きを

1,折れ曲がった後の傾き 2として,それぞ

表 - 5 解析結果

f	共試体名	引張鉄筋降 伏荷重(kN)	部材降伏 荷重(kN)	最大荷重 (kN)	無補強に 対する耐 力比	シートはく 離時の荷重 ^(kN)	シートはく離 時の中央た わみ(mm)
	 (1)実験値 	41.7	43.6	52.1	1.28	51.5	12.2
RC1	②解析値	42.1	43.0	50.7	1.25	50.7	12.5
	2/1	1.01	0.99	0.97	0.98	0.98	1.02
	 ①実験値 	43.1	44.1	48.5	1.19	48.1	8.8
RC2	②解析値	42.2	43.1	47.4	1.16	47.4	8.4
	2/1	0.98	0.98	0.98	0.97	0.99	0.96
	 (1)実験値 	44.1	45.6	52.5	1.29	52.0	9.7
RC3	②解析值	42.0	42.7	49.1	1.21	49.1	10.0
	2/1	0.95	0.94	0.94	0.94	0.94	1.03
	 ①実験値 	42.2	44.1	49.8	1.23	49.7	10.7
RC4	②解析値	40.1	41.2	48.5	1.19	48.5	12.5
	2/1	0.95	0.93	0.97	0.97	0.98	1.17
RC5	 (1)実験値 	41.7	44.6	54.9	1.34	54.2	12.4
	②解析値	46.5	47.6	54.5	1.36	54.5	10.8
	2/1	1.11	1.07	0.99	1.01	1.01	0.87
	 (1)実験値 	39.7	41.7	49.4	1.22	48.5	11.2
RC6	2解析値	42.5	42.9	49.4	1.21	49.4	9.9
	2/1	1.07	1.02	1 00	0.00	1.02	0.00

図 - 8 不確定性を考慮した 図 - 9 1とU1の相関 付着構成則

れを変動係数 20%の正規分布と仮定した。 1 と U1 に関しては図 - 9に示すように付着試験 結果において相関が見られたので相関係数 -0.831を与えて考慮した。

4.2 解析概要

モンテカルロシミュレーション法を用いてシ ート接着界面状態に不確定性を有するシート補 強 RC はりの補強性能解析を行った。概要を表 - 6 に示す。F1 の接着界面を有する場合(RC1) を基準として、図 - 5 に示す 19 個のバネ要素に U1, U2, 1, 2 の不確定性を導入した。試 行回数は収束性を確認して 300 回とし,U1<0, U2<U1,コンクリート圧縮破壊先行型のものを 除いた。

表 - 6 解析概要

試行回数	300
変動係数(%)	20
θ 1とU1の相関係数	-0.83
基準とするU1(mm)	0.317
基準とするU2(mm)	0.585
基準とする θ 1(N/mm ³)	3.43
基準とする θ 2(N/mm ³)	0.49

4.3 解析結果

図 - 10にシートはく離開始時および最大荷 重時の荷重-中央たわみ関係を示す。シートはく 離時および最大荷重時ともに荷重-中央たわみ 関係において強い正の相関が見られる。次に, 表 - 7において荷重と中央たわみを比較すると, シートはく離開始時,最大荷重時ともに,中央 たわみが,より不確定性の影響を大きく受けて いることが分かる。これは,荷重は,シートは く離以前の挙動に支配されるのに対して,中央 たわみは,はく離開始以降の挙動に支配される ためと考えられる。

5. まとめ

以下に本研究で得られた知見をまとめる。 (1)パテを有するシートとコンクリートの付着 試験より得られた付着力-相対変位関係をバイ リニアでモデル化し、平均化して求めた付着力-相対変位関係をシートの付着構成則として導入 した,シート補強 RC 部材の補強性能解析を行 い,シート補強 RC はり曲げ載荷試験の結果を 妥当に表現できることを確認した。

(2)付着構成則に変動係数 20%の正規分布とし て不確定性を考慮したシート接着界面に不確定 性を有するシート補強 RC はりの補強性能解析 を行い,シートはく離時および最大荷重時とも に荷重-中央たわみ関係において強い正の相関 が見られることを確認した。

(3)最大荷重はシートはく離開始以前の挙動に よって支配され,最大中央たわみははく離開始 以降の挙動に支配されるために,最大中央たわ み分布が不確定性の影響を,より大きく受ける と考えられる。

以上より,接着界面状態の不確定性による補 強性能における影響を安全係数として適切に評 価する必要があると考えられる。

謝辞

実験を行うにあたり,多大なご協力をいただきました 神戸大学工学部小林秀惠氏,コニシ(株)若原直樹氏, 日鉄コンポジット(株)小林朗氏に御礼申し上げます。

図 - 10 荷重-中央たわみ関係

表 - 7 不確定性を考慮した解析結果

			平均値	変動係数
シートはく		荷重(kN)	50.50	2.02(%)
離開	離開始時	中央たわみ(mm)	7.72	9.72(%)
最大荷重時	荷重(kN)	50.52	1.98(%)	
	中央たわみ(mm)	12.47	11.96(%)	

参考文献

吉田隆浩ら:接着界面条件を考慮した連続繊維シート補強 RC 部材の性能評価,コンクリート構造物の補修,補強アップグレードシンポジウム論文報告集第2
 費pp73-80,2002.10.社団法人 日本材料学会,

2) 佐藤靖彦ら:緩衝材を用いた炭素繊維シート補強
 RC はりの曲げ挙動,コンクリート工学年次論文集,
 vol.24, No.2, pp.1429-1434, 2002.6.

3) 杉山裕樹ら:接着樹脂の材質に着目した連続繊維シート補強 RC はりの付着および耐荷性能の評価,コンクリート工学年次論文集,vol.22,No.3,pp.289-294,2000.6.

4) 土木学会:連続繊維シートを用いたコンクリート構造物の補修補強指針, pp.73-82, 2000.7.

5) 全国上下水道エポキシ工事業協会:炭素繊維ライニング補強工法,1999.7.

6) 阪神高速道路公団: CF シートを用いた RC 床版補強 要領(案), pp.8-11, 1999.3.

7) 土木学会:連続繊維シートを用いたコンクリート構造物の補修補強指針, pp.81-82, 2000.7.

8) 土木学会: 性能照査型システムにおけるコンクリー ト構造物の補強, pp.74, 2001.

9) 土木学会:コンクリート標準示方書〔構造性能照査 編〕, pp.27-28, 2002.