論文 軽量コンクリートを用いたせん断破壊型 RC 梁の耐衝撃性に及ぼす せん断スパン比の影響

竹本伸一*1·岸 徳光*2·今野久志*3·松岡健一*2

要旨:本研究では,軽量コンクリートを用いたせん断補強筋を有しないせん断破壊型 RC 梁の衝撃耐荷性状を検討するため,同一断面形状を有しせん断スパン比の異なる軽量コンクリート RC 梁に関して,300 kg 重錘をスパン中央部に一度だけ落下させる重錘落下 衝撃実験を実施した。実験結果,1) せん断スパン比a/d=3程度の場合にはディープ ビーム的な傾向を示し,耐衝撃性が向上する傾向を示す。2) 4 $\leq a/d \leq 6$ の場合にはせ ん断スパン比の影響が小さく,終局時の最大支点反力の静的耐力に対する比や吸収エネルギー量の入力エネルギーに対する比は 2.30,0.70 前後の値である。

キーワード: 軽量コンクリート, RC 梁, せん断スパン比, 衝撃耐力

1. はじめに

近年、道路橋や鉄道橋等の上部構造の軽量化 を図ることを目的として、新しい構造形式の開 発のみならず、新しい材料の開発およびその適 用性検討が盛んに行われるようになってきた。 このうち,新材料として期待されているものの 一つに、粗骨材に焼成人工軽量骨材を用いたコ ンクリート¹⁾ (以後, 軽量コンクリート) があ る。焼成人工軽量骨材(以後,軽量骨材)は, 24時間吸水率が9~11%と小さく、比重が 1.2~1.3と小さいにもかかわらず圧壊荷重が 1,000 N 以上あること、この骨材を用いて 35~ 65 MPaの圧縮強度を有するコンクリートの製 造が可能であること、 有害化学物質を含まない こと, 塩分を含まずアルカリ骨材反応の心配が ないこと等, 従来の人工軽量骨材に比べて格段 に高品質化している。

このようなことから,軽量コンクリートの実 用化を目指して,梁や柱部材に関する静的な曲 げおよびせん断耐荷性状に関する実験的・解析 的研究が一部の機関で実施されている^{2),3)}。一 方,耐衝撃性に関する研究も,矩形 RC 梁を対 象に著者らによって実施されている⁴⁾。その結 果,1)曲げ破壊型の場合の動的応答性状や耐 衝撃性は普通コンクリートを用いる場合と同程 度であることや、2)数値解析的には、実測値の 引張強度を用いることにより、普通コンクリー トを用いる場合と同様の手法で解析可能である こと等、が明らかになっている⁵⁾。しかしなが ら、軽量コンクリートを用いる場合の耐衝撃設 計法を確立するためには、曲げ耐力のみならず、 せん断耐力も明らかにすることが肝要である。

このような観点より,本研究では軽量コンク リート RC 梁の合理的な耐衝撃設計法を確立す ることを目的に,せん断スパン比の異なるせん 断補強筋を有しないせん断破壊型 RC 梁に関す る重錘落下衝撃実験を実施した。本研究では, 断面形状を同一とし,せん断スパン比のみを変 化させてせん断余裕度をパラメータにとった4 種類全 20 体を製作して,実験を行っている。

2. 実験概要

2.1 RC 梁の形状寸法

図-1には,軽量コンクリート (Light-Weight Concrete) を用いた RC 梁 (以後,LW 梁)の 形状寸法および配筋状況の一例を示している。

*1 ドーピー建設工業(株)部長 北海道本店設計部(正会員)

*2 室蘭工業大学教授 工学部建設システム工学科 工博 (正会員)

*3 北海道開発土木研究所主任研究員 構造研究室 博(工)(正会員)

図-1 試験体概要図 (LW4 梁)

表-1 試験体の一覧

試験 体名	主鉄	純	せん断	計算静的	計算静的	せん断	実測静的	実せん断	術空凍度	
	筋比	スパン長	スパン比	せん断耐力	曲げ耐力	余裕度	せん断耐力	余裕度	副大述及 V (m/s)	
	P_t	(m)	a / d	V _{usc} (kN)	P_{usc} (kN)	α	P_{us} (kN)	α'		
LW3	0.015	1.5	3.0	80.7	175.1	0.46	142.7	0.82	3 3 5 3 75 1 1 25	
LW4		2.0	4.0		131.3	0.61	101.7	0.75		
LW5		2.5	5.0		105.0	0.77	90.5	0.86	5, 5.5, 5.75, 4, 4.25	
LW6		3.0	6.0		87.6	0.92	94.2	1.07		

表-2 コンクリートの力学的特性

コンク	比重	圧縮強度	引張強度	弾性係数	ポアソン比	鉄筋	计质	降伏強度	弾性係数	ポアソン比
リート		f_c ' (MPa)	f_t (MPa)	E_c (GPa)	Vc	名称	的頁	σ_y (MPa)	E_s (GPa)	V_{S}
軽量	1.86	41.8	2.53	21.1	0.21	D22	SD345	367	206	0.3

本実験に用いた試験体は,断面(梁幅×梁高) が200×300mmのせん断補強筋を有しない複 鉄筋矩形 RC 梁である。純スパン長は1.5,2.0, 2.5,3.0mの4種類としている。

表-1には、各試験体の静的設計値の一覧を 示している。試験体名は軽量コンクリートを表 すLW とせん断スパン比の値を組み合わせて示 している。表中の計算静的曲げ耐力 Pusc および 静的せん断耐力 Vusc は、土木学会コンクリート 標準示方書⁶⁾(以後,示方書)に基づき算定し ている。なお、Vusc 値は示方書に基づき計算値 の70%に低減して評価している。表より、い ずれの梁もせん断余裕度 α (= V_{usc} / P_{usc}) が $\alpha < 1.0$ であることより,静載荷時には設計的 にせん断破壊で終局に至ることが予想される。 また, 表中には別途実施した静載荷実験結果の 実測静的せん断耐力 P_{us} および P_{us} を P_{usc} で除 して算定した実せん断余裕度 α' (= P_{us} / P_{usc}) も合わせて示している。ここで、LW3 梁の実 測静的せん断耐力は計算値の1.8 倍程度と大き

表-3 鉄筋の力学的特性

い。これは, せん断スパン比が a / d = 3 と小さ いことによりディープビーム的な挙動を示して いることによるものと考えられる。

表-2 および 表-3 には,実験時のコンク リートと鉄筋の力学的特性を示している。軽量 コンクリートは,寸法 10 ~ 15 mm 程度の軽量 骨材(比重 1.20)を粗骨材として用いている。 表より,コンクリートの比重は 1.86 で,普通コ ンクリートの 80 % 程度となっている。また, 引張強度は圧縮強度の 1/20 程度であり,普通 コンクリートに比べて小さいことがわかる。

2.2 実験方法

実験は、リバウンド防止用治具付の支点治具 上に設置した RC 梁のスパン中央部に所定の高 さから一度だけ重錘を自由落下させる単一載荷 法により実施している。治具全体は回転のみを 許容するピン支持に近い構造である。重錘は載 荷点部直径が 150 mm の円柱状鋼製であり、そ の底部には片当たりを防止するために 2 mm の 球状のテーパが施されている。

図-2 重錘衝撃力,支点反力および変位波形

測定項目は,重錘衝撃力P,合支点反力R(以後,支点反力)および載荷点変位 δ (以後,変位)波形である。実験終了後には,RC梁側面に生じたひび割れをスケッチしている。

3. 衝撃実験結果および考察

3.1 重錘衝撃力,支点反力および変位波形

図-2には、LW4 梁とLW6 梁の重錘衝撃力 P,支点反力 R および変位 δ に関する応答波形 を衝突速度 V 毎に示している。ここでは、ス パン長の違いが RC 梁の衝撃挙動に与える影響 も検討するため、純スパン長が 2 m (LW4) と 3 m (LW6)の場合の結果を比較して示してい る。なお、時間軸は、重錘衝撃力の立ち上がり 時点を 0 ms として整理している。

両梁の重錘衝撃力波形 P は,衝撃初期には 衝突速度 V の大きさにかかわらず継続時間が 1 ms 程度の正弦半波(第 1 波)の分布性状を示し ている。その後,荷重がほぼ零の状態が数 ms 継続した後,振幅が第 1 波に比べて小さな第 2 波が励起されている。第 1 波目の振幅および継 続時間は両梁でほぼ同一である。また,第 2 波 目の振幅の大きさや立ち上がり時間には両梁で 差異が見られ、スパン長が短く、せん断スパン 比およびせん断余裕度の小さい LW4 梁で振幅 が大きく、立ち上がり時間も早い。これは、RC 梁のスパン長が異なることによる梁の固有振動 周期の違いに起因しているものと判断される。

両梁の支点反力波形 R は、V の大きさにかか わらず, 15~30 ms 程度の継続時間を有する 三角形状の波形に周期が数 ms 程度の波形成分 が合成された分布性状を示している。このよう に、支点反力波形 R には、重錘衝撃力波形 P に 見られた第1波と第2波の形成は見られない。 なお, 波動の継続時間は, 両梁とも V の増加に 伴い徐々に長くなる傾向にあることが分かる。 これは,後述する変位波形 δ の場合と対応して おり, RC 梁の塑性化が V の増加とともに進行 していることを示唆している。波動の立ち上が り時間を比較すると、LW4 梁がLW6 梁よりも 早いことが分かる。これは、スパン長の違いに より主波動の支点への到達時間が異なることに よるものと推察される。また、最大値はLW4 梁の場合で若干大きく示されている。

変位波形 δ の結果から、いずれの梁も衝突速 度 V の増加に伴い最大値が大きくかつ周期が

延びており, RC 梁の塑性化が進行しているこ とが分かる。両梁を比較すると、V = 3 m/s時 点では、荷重載荷時の 40 ms 間は同様の振幅、 継続時間を示している。その後, LW4 梁はほ とんど振動性状を示さず残留している。一方, LW6 梁は減衰振動を呈し残留変位値に漸近し ている。V > 3.5 m/s において, LW4 梁は衝突 速度の増加に伴い荷重載荷時の継続時間が長く なる傾向を示している。V=4.25 m/s 時には荷 重除荷後、振動状態を示さずに変位が残留して いる。これは、下端鉄筋とコンクリートの付着 切れが広域的に発生し、鉄筋のみで抵抗してい ることによるものと推察される。LW6 梁の場 合は、LW4 梁に比較して主波動継続時間が長く 示されている。また、LW6 梁のV = 3.5 m/s, 4m/s における主波動継続時間は、これらの前後 の衝突速度の場合と比較して長く,ほとんど振 動していないことが分かる。これは、重錘衝突 面近傍でコンクリートがブロック化して剥落し 剛性が低下したことによるものと考えられる。

3.2 ひび割れ分布性状

図-3には、実験終了後のLW4梁およびLW6 梁のひび割れ分布性状を衝突速度 V 毎に示し ている。せん断スパン比の違いに着目すると、 V=3 m/s 時においては, LW4 梁は載荷点部か ら支点部に向けて進展するアーチ状のひび割れ が形成されせん断破壊型を呈していることが分 かる。一方, LW6 梁には, 前述したアーチ状の ひび割れは形成されず, スパン全域に渡って曲 げひび割れが形成されている。これより, この 衝突速度の時点では未だ曲げ型の応答性状が支 配的であることが伺がえる。

V=3.5~4 m/s において、LW4 梁のひび割 れ分布性状は、アーチ状のひび割れがより明瞭 に形成され、かつ載荷点部や支点部にはコンク リートの剥落も見られ、RC 梁の損傷が顕著化 していることが分かる。一方、LW6 梁は、V= 3 m/s の場合と同様に曲げひび割れが発生して いる。しかしながら、この衝突速度では梁の腹 部で斜めひび割れが明瞭に発生し、このひび割 れが主鉄筋に沿った割裂ひび割れとなって支点 まで進展しており、LW6 梁も明らかにせん断 破壊していることが分かる。

いずれの梁においても、V = 3.5 m/s および4 m/s においてコンクリートの剥落が見られ、終 局に至っていることが推察される。しかしなが ら、V = 3.75 m/s時点ではせん断破壊型のひび 割れが顕在化しているものの、コンクリートの

図-4 各種応答値

剥落は生じていない。これより、本論文では以 後 $V = 3.5 \sim 4 \text{ m/s}$ の平均としてV = 3.75 m/s時 点を終局と仮定し議論を進めることとする。な お、他のLW3、LW5 梁の場合も同様の傾向を 示していることを確認していることより、V = 3.75 m/s時点を終局とする。

3.3 各種応答値と衝突速度の関係

図-4には、各 RC 梁の最大重錘衝撃力 P_{ud} , 最大支点反力 R_{ud} ,最大変位 δ_{max} および残留変 位 δ_{rd} と衝突速度 V の関係を示している。な お、終局時点である V = 3.75 m/s 時の値には〇 印を記している。

最大重錘衝撃力 P_{ud} に関しては, せん断スパ ン比が最も小さい LW3 梁を除くと, せん断ス パン比の増大と共に P_{ud} も増加傾向にあること が分かる。LW3 梁の場合には, V=3 m/s 時に おいて,支点近傍まで達するアーチ状のひび割 れを確認しており,静載荷時のせん断耐力が計 算耐力を大幅に上回ったことと同様に, せん断 スパン比が小さいことによるディープビーム的 な挙動を示したことによるものと推察される。 なお、V = 3.75 m/s 時に値が減少したのは載荷 点部のコンクリートが剥落したことによるもの と考えられる。

最大支点反力 R_{ud} に関しては, 衝突速度 V が 小さい領域では, せん断スパン比が大きい場合 に R_{ud} が小さくなる傾向にあることが分かる。 これは, せん断スパン比が大きい場合には, せ ん断ひび割れと共に曲げひび割れも顕在化する 傾向にあることや, 主波動伝播時のエネルギー 損失が大きくなることによるものと考えられ る。しかしながら, 終局時点ではいずれの梁も 類似の値を示しており, せん断スパン比によら ず同程度の最大支点反力を示すことが分かる。

最大変位 δ_{max} は、せん断スパン比の大きさ にほぼ対応して大きくなる傾向を示している。 残留変位 δ_{rd} は、LW6 梁を除き各衝突速度に対 して各梁とも大差のない値を示している。LW6 梁の場合には、V = 3.5 m/s、4.25 m/s 時に大き な残留変位を示している。これは、図-3のひ び割れ分布性状からも明らかなように、ブロッ ク化した大きなコンクリート塊が剥落し、かつ

試験体名	入力 エネルギー E_k (kJ)	最大 重錘衝撃力 P _{ud} (kN)	最大 支点反力 <i>R_{ud}</i> (kN)	最大変位 δ_{max} (mm)	残留変位 δ_{rd} (mm)	吸収 エネルギー <i>E_a</i> (kJ)	耐力比 R _{ud} / P _{us}	エネルギー比 <i>E_a / E_k</i>
LW3	2.11	843.9	230.7	15.9	7.1	1.67	1.62	0.79
LW4		830.8	235.3	17.1	6.4	1.47	2.31	0.70
LW5	2.11	863.9	200.6	28.7	9.4	1.34	2.22	0.64
LW6		898.0	219.6	23.2	8.8	1.49	2.33	0.71

表-4 終局時における各種応答値一覧 (V=3.75 m/s)

割裂ひび割れも進展することにより,鉄筋とコ ンクリートが分離して鉄筋のみで抵抗する傾向 にあることによるものと考えられる。

3.4 終局時における応答値の比較

ここでは,上述の議論より,各梁の終局時点 を衝突速度 V=3.75 m/s 時点とし、各梁の耐衝 撃性を検討する。また, 図−2から明らかなよ うに、支点反力波形と変位波形とは位相差も少 なくかつ共に低周波成分が卓越していることよ り、ここでは支点反力が静載荷時の載荷荷重と 類似の特性を示すものと仮定し、終局時の最大 支点反力を衝撃耐力として評価することとす る。表-4には、両梁の終局時における各種応 答値を示している。表中,耐力比は最大支点反 力を実測静的せん断耐力で除した値であり、エ ネルギー比は試験体が吸収したエネルギー量を 入力エネルギー量 ($E_k = MV^2 / 2, M$; 重錘質 量)で除した値である。なお,吸収エネルギー は、支点反力-載荷点変位 (R-δ) 曲線の第1 象限を用いて評価している。

ここで、ディープビーム的な挙動を示してい ると考えられる LW3 梁を除いて、耐力比 R_{ud} / P_{us} 、エネルギー比 E_a / E_k を比較すると、それ らの値はせん断スパン比の大小によらず大略類 似であり、平均値は 2.29、0.68 となる。

4. まとめ

本研究では,軽量コンクリートを用いたせん 断補強筋を有しないせん断破壊型 RC 梁の衝撃 耐荷性状を検討するため,同一断面形状を有し せん断スパン比の異なる軽量コンクリート RC 梁に関する重錘落下衝撃実験を実施した。本実 験結果を要約すると、以下のとおりである。

- 1) 重錘衝撃力,支点反力波形は,せん断スパン比にかかわらず類似の分布性状を示す。
- 2) せん断スパン比が3の場合には、静・衝撃 載荷時共に、ディープビーム的な挙動を示 し耐力が向上する傾向を示す。
- 3) せん断スパン比が4~6においては類似の 耐衝撃性状を示し,終局時の耐力比および 吸収エネルギー比はそれぞれ 2.30, 0.70 前 後の値となる。

参考文献

- 人工軽量骨材アサノライト、太平洋マテリ アル(株)
- 2) 岡本享久, 早野博幸, 柴田辰正: 超軽量コン クリート, コンクリート工学, Vol.36, No.1, pp.48-52, 1998.1
- 3) 二羽淳一郎, 岡本享久, 前堀伸平:高品 質軽量コンクリートの構造部材への適用, コンクリート工学, Vol.38, No.12, pp.3-9, 2000.12
- 竹本伸一,岸 徳光,安藤智啓,松岡健一: 高性能軽量コンクリートを用いた曲げ破 壊型 RC 梁の耐衝撃挙動,コンクリート工 学年次論文集, Vol.23, No.3, pp.1339-1344, 2001.6
- 5)岸 徳光,安藤智啓,松岡健一,竹本伸一: 高性能軽量コンクリートを用いた曲げ破壊 型RC梁に関する弾塑性衝撃応答解析,構造 工学論文集,Vol.49A, pp1267-1277, 2003.3
- 6) コンクリート標準示方書(平成14年制定)
 設計編,土木学会,2002.