論文 初期に導入したひび割れがコンクリートの耐久性へ及ぼす影響に関す る研究

橋口 大輔^{*1}·添田 政司^{*2}·大和 竹史^{*3}

要旨:本研究では,初期ひび割れを導入したコンクリートに対して,凍害,塩害,中性化の促進試験を行い,初期ひび割れの影響がコンクリートの耐久性に及ぼす影響について検討を行った。その結果,ひび割れ幅および深さの増大により,著しい耐久性の低下がみられた。また,耐凍害性および遮塩性があるとされている高炉スラグ微粉末を混和することで,若干の改善がみられた。 キーワード:初期ひび割れ,凍害,中性化,塩害,鉄筋の腐食

1. はじめに

近年,コンクリート構造物に対する劣化事例が 数多く報告されており,社会的な問題となってい る。実構造物で早期劣化の要因として考えられる 1つに、材齢の初期段階においてコンクリートの 表面部に発生するひび割れが挙げられる。これに より,凍害,中性化,塩害などの様々な劣化機構が このひび割れ部に局部的に促進され,耐久性が低 下し,コンクリート中の鉄筋の腐食を招くと考え られる。既往の研究より、ひび割れの無いコンク リートに対しての耐久性に関する研究は,数多く 報告されてきたが、初期ひび割れを有するコンク リートに対しては,研究報告が少なく未だ明らか とされていない。また,標準示方書(施工編)¹⁾にお いて,ひび割れを有する場合,塩害における性能 照査方法は定められているが,凍害,中性化にお いては性能照査方法が明確にされていないのが現 状である。

そこで本研究では、ステンレス板を用いて導入 した模擬ひび割れと、曲げ試験により導入した曲 げひび割れの2種類の初期ひび割れに対して、凍 害、中性化、塩害の促進試験を行い初期ひび割れ の影響について検討を行った。また、ひび割れの 無いコンクリートにおいて、耐凍害性、遮塩性な どといった品質改善効果のある高炉スラグ微粉末 を混和したコンクリートについても同様の試験を 行い比較検討を行った。

- 2. 試験概要
- 2.1 初期ひび割れ形式

本研究では,2種類の初期ひび割れ形状を作製 し,耐久性に及ぼす影響について検討を行った。

(1) シリーズ1:模擬ひび割れ

コンクリート打設前に,厚さ0.1mm,0.3mmの ステンレス板を予め加工しておき,中性化およ び塩水噴霧試験用供試体は,図-1のように角 柱供試体に80mm間隔で配置した。また,凍結 融解試験用供試体は図-2のようにステンレス 板を200mmの間隔で配置した。コンクリート硬 化後,そのステンレス板を除去しこの除去した 部分を模擬ひび割れとした。ひび割れ深さは 10mm,30mmの2種類を作製した。供試体は高 炉スラグ微粉末の特性である微細ひび割れの閉 塞性²⁾を考慮して材齢91日まで水中養生を行っ た。その後,凍結融解,中性化,塩害の促進試験 を行い,初期ひび割れが耐久性に及ぼす影響に ついて検討を行った。

(2) シリーズ2:曲げひび割れ

供試体は図 - 3 に示すように,D13mmの異形 鉄筋をかぶり40mmに配置して,コンクリート打

*1 福岡大学大学院 工学研究科建設工学専攻 修士(工学) (正会員)

*2 福岡大学大学院助教授 工学研究科資源循環・環境工学専攻 助教授 博士(工学)(正会員)

*3 福岡大学教授 工学部社会デザイン工学科 教授 博士(工学)(正会員)

表 - 1 配合表

置換率	W/C	s/a	単位量(kg/m ³)					混和剤(ml)		スランフ゜	Air
(%)	(%)	(%)	W	С	BS	S	G	AE減水剤	AE剤	(cm)	(%)
無混和			161	321	0	689	1193	803	963	7.0	4.0
30	50	39	161	225	96	689	1193	1445	1124	7.5	4.1
60			161	128	193	689	1193	1605	1124	6.2	3.5

設後,材齢28日まで水中養生させた後,圧縮試験 機を用いて,3点載荷により,コンクリート中央部 に曲げひび割れを導入した。その時の導入した底 面のひび割れを等間隔の5点で測定し,平均ひび 割れ幅が0.1mm,0.3mmとなるように制御しひ び割れ幅とした。ひび割れを発生させた後,ひび 割れ部からの影響を明らかとするため,ひび割れ 面を除く5面をエポキシ系樹脂接着剤でシールを 行った。材齢91日まで水中養生を行った後,中性 化,塩害の促進試験を行い,鉄筋腐食に及ぼす影 響について検討を行った。

2.2 使用材料および配合

結合材として普通ポルトランドセメント(密度 3.16g/cm³,略号:C),混和材に高炉スラグ微粉末 (密度2.91g/cm³,粉末度4000cm³/g略号:BS), 細骨材に海砂(密度2.58g/cm³,略号:S),粗骨材 に砕石2005(密度2.78g/cm³,略号:S),粗骨材 に砕石2005(密度2.78g/cm³,略号:G)を使用し た。混和剤にはAE減水剤およびAE剤を用いた。 高炉スラグ微粉末の置換率を質量比で0,30,60% の割合でセメントと代替した。スランプは8± 2.5cm,空気量は4.5±1.5%を目標とした。その 配合を表 - 1に示す。

2.3 試験方法

各促進試験には角柱供試体(10×10×40cm)を 用いた。凍結融解試験については,図-2に示す ように共鳴振動数の測定位置をA,Bの2箇所の 測定を行った。塩水噴霧試験については,写真-1に示すような塩水を噴霧する装置を用いて促進 試験を行った。塩化物イオン量の測定は,促進期 間3サイクル毎に,JCI-SC8に準じて,吸じんハ ンマードリルを用いて40gの試料を採取した。 なお,試料採取場所として,シリーズ1では,ひ び割れ深さ方向に,10mm,20mm,30mmの3箇所 から,シリーズ2においては20mm,40mmの2箇 所から試料を採取し,全塩分量を測定した後,見 かけの拡散係数を算出した。見かけの拡散係数 は式(1)に示すFickの拡散方程式の解の式を用い て,最小二乗法により求めた。

 $C = \{ 1 - erf(x/2 (D_c \cdot t)) \}$

- x : 表面からの深さ(cm),t: 経過時間(s)
- C : 深さ x における塩化物イオン量(%)

C₀:表面塩化物イオン量(x=0における塩化

写真 - 1 塩水噴霧試験機

物イオン量(%))

- D₂:見かけの拡散係数(cm²/s)
- erf:誤差関数

供試体は,打設後4時間で脱型し,材齢91日 まで水中養生を行った後,表-2の試験を開始し た。

- 3. 試験結果および考察
- 3.1 初期ひび割れが各種劣化機構に及ぼす影響
 - (1) 相対動弾性係数および耐久性指数

図 - 4 に、シリーズ1 でのひび割れ深さ 10mm,30mmでの凍結融解試験結果を相対動弾 性係数で示す。ひび割れ深さが10mmの場合,ひ び割れ幅の増大にもかかわらず,相対動弾性係数 は90%以上の値を示した。しかしながら、ひび割 れ深さが30mmにおいては、ひび割れ幅が0.1mm 以上のものでも早いサイクルにて相対動弾性係数 が60%を下回る結果となった。表 - 3は,凍結融 解試験の結果を耐久性指数で示したものである。 ひび割れ深さが10mmにおいては、各ひび割れ幅 ともに耐久性指数が90%以上の値を示している。 しかしながら,ひび割れ深さが30mmの場合にお いては、ひび割れ幅が0.1mm以上で耐久性指数 60を下回る結果となった。写真 - 2は,凍結融解 試験終了後の供試体の外観観察を行ったものであ る。これより、初期に導入したひび割れ部分に水 が浸透し,凍結融解作用の繰返しにより,膨張,収 縮が繰り返され、そのため初期に導入したひび割 れ幅および深さが著しく大きくなり,さらなる劣 化を引き起こしたものと考えられる。以上のこと から、凍害での初期ひび割れの影響は、ひび割れ 幅による影響よりも,ひび割れ深さの方が卓越す

表 - 2 試験項目および試験方法

試験項目	試験方法					
凍結融解	JIS A 1127共鳴振動による動弾性係数の試					
促進試験	験方法に準拠					
中性化	温度40 、湿度40%、CO₂濃度10%の条件					
促進試験	下で試験					
中性化 深さ測定	供試体の割裂面に、フェノールフタレイン 1%エタノール溶液を噴霧し、変色域を測 定					
塩水噴霧	3%NaCl水溶液を4日間噴霧、3日間乾燥の					
試験	条件下で試験を1サイクルとし7サイクル					
塩分浸透	供試体の割裂面に、0.1規定の硝酸銀水溶					
深さ測定	液を噴霧し、変色域を測定					
塩化物 イオン量 測定	JCI-SC4-1987に準じて硝酸銀滴定法によ り全塩分量を測定					
発錆面積 率測定	JCI-SC5-1987に準じて測定					

図 - 4 凍結融解試験結果

表 - 3 耐久性指数

7\7、実わ恒	ひび割れ深さ(mm)						
いい習れに面	10	30					
mm	無混和		BS30	BS60			
無し	-	90.8	94.2	94.8			
0.1	95.0	32.5	43.4	45.8			
0.2	94.8	-	-	-			
0.3	94.2	17.8	20.1	21.4			
0.5	98.4	-	-	-			
1.0	98.2	-	-	-			

写真 - 2 凍結融解試験終了後供試体

る傾向にあるため、表面部のひび割れ幅が小さい ものでも,深さが大きい場合では早期劣化を引き 起こすと考えられる。

図 - 5 はシリーズ1 での, ひび割れ深さ 10mm,30mm での中性化深さと促進期間(年)の 平方根での関係を,表-4は,中性化速度係数で 示したものである。各ひび割れ深さとも,ひび割 れ幅の増加に伴い,中性化深さは高い値を示して いる。また,初期ひび割れを導入したものは,そ の深さの位置から中性化が進行しおり、初期材齢 での進行は速いと考えられる。しかしながら,中 性化速度係数で比較すると,ひび割れ無しに対し てひび割れを導入したものは中性化速度係数が小 さくなる結果となった。これは、コンクリート中 の中性化が進むと、細孔構造が緻密化し、物質の 移動・拡散が起こりにくくなったため3と考えら れる。また,高炉スラグ微粉末を混和したものは ひび割れの有無に関わらず,置換率の増加に伴い ひび割れ深さも中性化速度係数も高い値を示して いる。これは,高炉スラグ微粉末を混和すること で、コンクリート中のCa(OH)。の消費量が大きく なっているため4)と考えられる。以上のことから 中性化では,初期ひび割れをを有するコンクリー トでは,材齢の初期段階では中性化の進行は速い が、長期においては中性化速度係数が小さくなる 結果より,その進行速度は遅くなる結果となっ た。また、高炉スラグ微粉末を混和したコンク リートにおいては,ひび割れ幅の影響よりも,置 換率の増加にともなう Ca(OH)。の消費量が大き く影響するものと考えられる。

(3) 塩分浸透深さ

図 - 6 にシリーズ1 での塩水噴霧試験結果を示 す。各ひび割れ深さにおいて,ひび割れ幅の増加 に伴い,塩分浸透深さは大きくなっている。しか しながら,ひび割れ深さ30mmにおいては,初期 に導入した深さまでは塩分は浸透していない。こ れは,写真-1で示したように,供試体を縦に配 置しているため,直接的にひび割れ部に塩分が浸 透しなかったものによる影響と考えられる。高炉 スラグ微粉末の混和による影響では、塩分浸透深 さが小さくなっている。これは,高炉スラグ微粉

(mm/ 年) ひび割れ深さしび割れ幅 置換率(%) (mm)(mm)無混和 30 60 46.25 0.10.2 30.24 100.3 40.83 0.5 44.97 1.051.19 無し 67.20 59.00 75.40 30 23.74 31.36 0.1 16.12 0.3 33.30 38.23 43.16

表 - 4 中性化速度係数結果

末の遮塩性によるものと考えられる。

(4) 塩化物イオン量および見かけの拡散係数

ひび割れ深さ30mmの供試体においての,塩水 噴霧促進期間5サイクルに塩化物イオン量を測定 した結果を図 - 7 に、その時の見かけの拡散係数 とひび割れ幅の関係を表 - 5 に示す。ひび割れ表 面部では、ひび割れ幅が大きいほど塩化物イオン 量は大きくなっている。しかし内部では,ひび割 れ深さ30mm入れているのにもかかわらず,高炉 スラグ微粉末が無混和と比較して置換率の増加に 伴い塩化物イオン量は減少し,見かけの拡散係数 が小さくなっている。これは,高炉スラグ微粉末 を混和することでひび割れ無しでは、遮塩性を有 することが考えられる。また,ひび割れが有る場 合では,内部における塩化物イオン量が小さいこ とから,高炉スラグ微粉末の潜在水硬性により水 和物が形成され、コンクリートの緻密化されると ともに,初期に導入したひび割れ部にもその充填 効果²⁾によってため塩化物イオン量の抑制になっ たものと考えられる。

3.2 鉄筋腐食に及ぼす影響

図 - 8 に、シリーズ2 での中性化促進期間75日 での中性化深さと発錆面積との関係を示す。ひび 割れ幅0.3mmの高炉スラグ微粉末が無混和の供 試体では,中性化深さが,鉄筋のかぶりの位置に 到達しているため,鉄筋の発錆は認められるが, 高炉スラグ微粉末が無混和のひび割れ幅0.1mm においては,中性化深さが鉄筋のかぶりの位置に 到達していないにもかかわらず,腐食が認められ た。このことから、中性化では、ひび割れ幅が 0.1mm 以上存在する場合, 中性化深さが鉄筋の かぶりの位置まで到達していないものについても 鉄筋の腐食を引き起こす可能性があると考えられ る。また、高炉スラグ微粉末を混和した供試体に ついては,置換率の増加に伴い,中性化深さおよ び発錆面積は高炉スラグ微粉末が無混和と比較し て大きな値を示した。これは前述したように,コ ンクリート中の Ca(OH)。の消費量による影響で あると考えられる。

図 - 9 に,シリーズ2での塩水噴霧促進期間9 サイクルでの塩分浸透深さおよび,コンクリート

表面からひび割れ深さ方向に20~40mmの位置 における塩化物イオン量と発錆面積との関係を 示す。高炉スラグ微粉末が無混和の供試体にお いて,ひび割れ幅0.3mmでは,許容ひび割れ幅 0.2mmを上回っているため、鉄筋の腐食は認め られたが,許容ひび割れ幅0.2mm以下であるひ び割れ幅0.1mmにおいても,鉄筋の腐食が確認 された。これは,塩分浸透深さが,鉄筋のかぶり の位置まで到達しており,鉄筋部における塩化物 イオン量が3.5kg/m3と大きな値を示しているた めと考えられる。このことから,高炉スラグ微粉 末が無混和の供試体において、ひび割れ幅が 0.1mm 以上のものでも,鉄筋の腐食を引き起こ す可能性があると考えられる。しかし,高炉スラ グ微粉末の混和により,ひび割れ幅0.1mmにお いての鉄筋の腐食が認められなかったため,遮塩 性を有すると考えられる。

図-10は、ひび割れ位置においての中性化と塩 分浸透での腐食状況を示したものである。ひび割 れ部での鉄筋が局部的に腐食しており、促進期間 の経過とともに鉄筋の表面を伝わって拡大する状 況が観察された。

以上のことから,中性化では,ひび割れ幅 0.1mmにおいて,中性化残りが10mm程度であ るならば,腐食を引き起こすと考えられる。塩害 では,ひび割れ幅が0.1mmのものにおいても,鉄 筋の腐食を引き起こすと考えられる。

4. まとめ

初期ひび割れが各種耐久性及び鉄筋腐食に及ぼ す影響について,本研究のまとめを以下に示す。

- (1)凍害では、ひび割れ深さが10mm程度であれば、ひび割れ幅に関わらず十分な耐凍害性が 期待できる。しかし、ひび割れ深さが30mm では、ひび割れ幅が0.1mm以上のものでは耐 凍害性が得られない。
- (2)中性化では、初期ひび割れ幅が大きいほど、初期段階における中性化深さは大きいが、その後の中性化速度はひび割れの無いコンクリートと比較して遅くなる傾向にある。
- (3)塩害では,初期ひび割れ幅および深さの増加と

ともに塩分浸透深さ,塩化物イオン量および見かけの拡散係数は大きくなる。

- (4)鉄筋腐食に及ぼす中性化の影響では、ひび割れ 幅が0.1mm以上において、中性化残りが 10mm程度においても、鉄筋の腐食を引き起こ す可能性がある。
- (5)鉄筋腐食に及ぼす塩害の影響では、ひび割れ幅 が0.1mm以上のものにおいても、鉄筋腐食を 引き起こす可能性がある。
- (6)高炉スラグ微粉末の混和による影響では,凍害 および塩害においては,組織の緻密化により抑 制効果は得られるが,中性化においては,Ca (OH)₂の消費量の方が卓越し,鉄筋腐食に及ぼ す影響は大きい結果となった。

参考文献

- 1) コンクリート標準示方書[施工編],pp22-29,2002
- 2) 松下博通,川崎英司,前田悦孝,真角修一:高炉 スラグ含有コンクリートの微細ひび割れの閉塞に 関する研究,セメントコンクリート論文集 No52,pp638-643.1998
- 3) 伊代田岳史, 矢島哲司, 魚本健人: コンクリート のひび割れが中性化速度に及ぼす影響, コンク リート工学年次論文報告集, Vol.20, No.2, pp979-984, 1998
- 4) 長瀧重義,大賀宏行,荒井俊晴:高炉スラグ微粉
 末を混和したコンクリートの中性化,高炉スラグ
 微粉末のコンクリートへの適用に関するシンポジ
 ウム,pp143-150,1987