論文 コンクリート中の微細なひび割れが塩分浸透性に及ぼす影響

細谷 多慶^{*1}·森脇 拓也^{*2}·綾野 克紀^{*3}·阪田 憲次^{*4}

要旨:コンクリートには、劣化に伴って微細なひび割れが発生する。従って、コンクリート の塩化物イオン浸透性はその劣化とともに変化する。本研究では、乾燥および凍結融解作用 によって劣化したコンクリートの塩分浸透性を調べた。種々の浸せき期間における塩化物イ オン量分布を測定し、新しい塩化物イオン拡散係数の算定式を提案した。 キーワード:複合劣化、微細ひび割れ、浸透性、塩害、細孔径分布

1. はじめに

コンクリートはマクロ的に見ると密実な構造 であるがミクロ的な視点で捉えると気泡ならび に未水和物質等の存在によりポーラスな固体で あると考えられる¹⁾。劣化に影響を与える物質は これらの移動可能な空隙を通じて徐々に移動拡 散するが,そこに微細なひび割れが存在すると バイパスのような効果で移動スピードが飛躍的 に速くなる²⁾。凍結融解作用と塩害,中性化を組 み合わせた塩害,中性化の促進現象は凍結融解 作用による微細なひび割れの発生を要因として 説明できると考えられる³⁾。

一方, 誤差関数を用いた Fick の第2法則に基 づく拡散方程式の解による方法では塩化物イオ ンがある程度浸透した時点の1つの浸せき期間 における拡散係数を用いている。しかし, 1つ の浸せき期間の拡散係数からだけではさまざま な劣化による物質の浸透性や浸透初期の段階で の特徴を表現することが難しいと考えられる。

本研究では乾燥,凍結融解作用によりコンク リートに微細なひび割れを発生させ,さまざま な浸せき期間における塩化物イオンの浸透性を 測定した。これにより,劣化を受けたコンクリ ートの塩化物イオンの拡散係数を求め,浸せき 期間を考慮した拡散係数の算定式を提案した。

2. 実験概要

2.1 使用した材料,配合および実験計画

本研究で使用した配合ならびに材料を Table.1 および Table.2 に示す。供試体は,材齢 28 日ま で 20℃標準水中養生を行った。養生終了後,乾 燥,凍結融解作用により供試体に微細なひび割 れを発生させた。ひび割れ発生後,塩水浸せき により塩化物イオンを浸透させた。比較として, 養生終了後すぐに塩水浸せきを行い,劣化を受 けていないコンクリートにおける塩化物イオン の浸透性を求めた。実験フローを Fig.1 に示す。

2.2 劣化の条件

(1) 乾燥による劣化

乾燥による劣化は大型電気炉を用いて 105℃ および 500℃の温度条件下で行った。105℃の乾 燥期間は100×100×400mmの角柱供試体による 質量変化量が 0.002%/day となるまでとし,水 セメント比 60%, 30%でそれぞれ 35 日間,56 日間であった。500℃の乾燥は温度上昇率を室温

*1 アイサワ工業(株) 技術研究所主任研究員 工修 (正会員)
*2 岡山大学大学院 自然科学研究科環境システム学専攻 (非会員)
*3 岡山大学大学院 自然科学研究科地球・環境システム学専攻助教授 工博 (正会員)
*4 岡山大学大学院 自然科学研究科地球・環境システム学専攻教授 工博 (正会員)

Max size	Slump	W/C	Air	s/a	Unit weight per volume (kg/m ³)				Admix1.	Admix2.
(mm)	(cm)	(%)	(%)	(%)	W	С	S	G	(C×%)	(C×%)
20	10~14	60	4.5±1.5	47.7	175	292	846	978	1.0	0.0005
20	10~14	30	4.5±1.5	39.6	175	583	607	978	1.0	0.0016

Table.1Mixture proportions of concrete

Admix1: High-range water reducing admixture, Admix2: Air-entraining admixture

Table.2Property of materials

Material	Property						
Portland cement	Density 3.15g/cm ³ Specific surface area 3,200cm ² /g						
Sand	River sand, Density 2.58g/cm ³ Water absorption 1.95%, FM 2.24						
Coarse aggregate	Crushed stone, Density 2.72g/cm ³ Water absorption 0.70%, FM 6.85						
HRWRA	Polycarboxylic acid						

から 100℃までを1時間当たり 160℃, 100℃か ら 300℃までを1時間当たり 60℃, 300℃から 500℃までを1時間当たり 30℃とし, 500℃到達 後, 炉外に取り出し室温まで除温した。

(2) 凍結融解作用による劣化

凍結融解作用による劣化は JIS A 1148-2001(B 法:気中凍結水中融解)に準拠し,360,540,720 サイクルまで劣化させた。

2.3 塩化物イオン浸透試験

乾燥および凍結融解作用により劣化したコン クリートの塩化物イオンの浸透性を測定するた め,側面をエポキシ樹脂でコーティングした 100 ×100×400mm の角柱供試体と上下端面をエポ キシ樹脂でコーティングした φ100×200mm の 円柱供試体を濃度 3.5%の塩化ナトリウム水溶液 中に浸せきした。浸せき期間は 14,28,91,182 日とした。また,比較試験として JSCE-G572-2003 による浸せき試験を行った。塩化物イオン量は JIS A 1154-2003 に定められたチオシアン酸第二 水銀吸光光度法を用いて測定した。

2.4 劣化の評価方法

本研究におけるコンクリートの劣化の評価方 法は劣化終了後の細孔容積測定ならびに微細な ひび割れの状態観察とした。細孔容積測定は水

Photo.1 Microcracks by drying at 500C

銀圧入式ポロシメータ(測定範囲 3nm~500 μm) を用いた。微細なひび割れの状態観察は蛍光顕 微鏡(拡大倍率 75 倍)を用いた。

実験結果および考察

3.1 劣化を受けたコンクリートの微細なひび割 れおよび細孔径分布

Photo.1 に 500℃の乾燥における代表的な微細 なひび割れの写真を示す。遷移帯中に発生した ボンドクラックを連結するモルタルクラックが 観察できる。これらは通常,荷重載荷により発 生するひび割れと考えられるが,今回の実験で は乾燥による劣化においても発生していること が分かった。観察された微細なひび割れの幅は 最大 1µm 程度であった。

Fig.2, **Fig.3** および **Fig.4** に劣化を受けたコン クリートの細孔径分布を示す。105℃の乾燥では 100nm~1 µm の範囲において空隙が増加してい る。500℃の乾燥では 10nm と 800nm 付近でピー クが見られる。凍結融解作用では、塩化物イオ ンの浸透に影響を及ぼすと考えられる 200nm 以 上の空隙の増加は見られない。

3.2 劣化を受けたコンクリートの相対動弾性係 数変化

Fig.5 に凍結融解試験による相対動弾性係数の

Fig.2 The change of pore diameter by drying at 105C

Fig.3 The change of pore diameter by drying at 500C

変化を示す。本研究で用いたコンクリートは練 り混ぜ時の空気量が 4.5%であり、凍結融解作用 に対する抵抗性が高く,720 サイクル経過後も相 対動弾性係数に変化が見られなかった。

3.3 劣化を受けたコンクリートの強度特性

Fig.6 に劣化を受けたコンクリートの強度特性 を示す。105℃の乾燥を受けたコンクリートは強 度低下していない。500℃の乾燥を受けたコンク リートの強度の低下は,熱収縮により発生した 強度に影響を及ぼす微細なひび割れが原因と考 える^{4),5)}。凍結融解作用を受けたコンクリート は凍結融解作用に対する抵抗性が高く,強度は 低下していない。

3.4 劣化を受けたコンクリートの塩化物イオン 量分布

Fig.4 The change of pore diameter by freezing and thawing tests

Fig.5 Results of freezing and thawing tests

Fig.7 および Fig.8 に円柱供試体の供試体表面 からの距離と塩化物イオン量の関係, Fig.9 およ び Fig.10 に円柱供試体の浸せき期間と塩化物イ オン量の関係を示す。劣化を受けていないコン クリートでは浸せき初期の塩化物イオン浸透量 が小さく,浸透時間に伴い徐々に塩化物イオン が浸透しているのに対し,500℃の乾燥を受けた コンクリートでは浸せき初期において塩化物イ オンの浸透が急激に進んでいることが分かる。

3.5 従来の方法による拡散係数の算定

土木学会標準示方書に示されている Fick の第 2法則に基づく拡散方程式の解を式(1)に示す。

$$C(x,t) - C_i = C_{a0} \left\{ 1 - erf\left(\frac{x}{2\sqrt{D_{ap} \cdot t}}\right) \right\}$$
(1)

ここに、C(x,t): コンクリート表面からの距離

Fig.6 Results of deterioration type on concrete strength

x(cm),供用期間 t(年)において測定されたコンク リート単位質量あたりの全塩化物イオン(%), x:暴露面から全塩化物イオンを測定した個所ま での距離(cm),t:浸せき期間(年),C_{A0}:浸せき 試験によるコンクリート表面の全塩化物イオン でコンクリート単位質量あたりの量として求め られる(%),C_i:初期に含有されるコンクリート 単位質量あたりの全塩化物イオン(%),D_{ap}:浸せ き試験による見かけの拡散係数(cm²/年),erf:誤 差関数である。ただし,

$$erf(s) = \frac{2}{\sqrt{\pi}} \int_0^s e^{-\eta^2} d\eta$$
 (2)

式(1)を用いて算出した拡散係数を Fig.13 の塗 りつぶしに示す。拡散係数は Fig.11 に示す上面 と側面をエポキシ樹脂でコーティングした φ 100×150mm の円柱供試体を用いて濃度 10%の 塩化ナトリウム水溶液中に浸せきした供試体の 浸せき期間 91 日目における塩化物イオン量分布 から求めた。1つの浸せき期間における塩化物 イオン量分布から拡散係数を求める従来の方法 では劣化の程度と浸せき期間に応じた拡散係数 の変化を正しく表すことができないことが分か る。そこで,劣化を受けたコンクリートの浸せ き期間を考慮した拡散係数を求めるための算定 式が必要となる。

3.6 提案式による拡散係数の算定

本研究で提案する算定式を以下に示す。Fig.12 の a)は一軸方向の浸透を受ける角柱供試体の概

Fig.8 Chloride ion concentration by drying at 500C

念図である。角柱供試体の一次元拡散方程式は 式(3)となる。

$$\frac{\partial C(x,t)}{\partial t} = D \cdot \frac{\partial^2 C(x,t)}{\partial x^2}$$
(3)

ここに、C(x,t)は任意時間、任意場所における 塩化物イオン濃度、Dは拡散係数である。xとt はそれぞれ角柱供試体における中心からの軸方 向距離と時間軸である。式(3)は供試体の全部分 において成り立たねばならない。また、式(4)も 任意の関数F(x,t)において成り立たねばならない。

$$\int_{0}^{L} F\left\{ D \cdot \frac{\partial^{2} C(x,t)}{\partial x^{2}} - \frac{\partial C(x,t)}{\partial t} \right\} dx = 0$$
 (4)

部分積分の公式によって式(4)の第一項は式(5) に書き換えられる。

$$D \cdot \int_{0}^{L} F \cdot \frac{\partial^{2} C(x,t)}{\partial x^{2}} dx$$

= $\left[F \cdot D \cdot \frac{\partial C(x,t)}{\partial x} \right]_{0}^{L} - D \cdot \int_{0}^{L} \frac{\partial F}{\partial x} \cdot \frac{\partial C(x,t)}{\partial x} dx$ (5)

Fig.9 The change in properties of chloride ion concentration by control with time

$$D\int_{0}^{L} \frac{\partial F}{\partial x} \cdot \frac{\partial C(x,t)}{\partial x} dx$$

= $\left[F \cdot D \cdot \frac{\partial C(x,t)}{\partial x}\right]_{0}^{L} - \int_{0}^{L} F \cdot \frac{\partial C(x,t)}{\partial t} dx$ (6)

式(6)の右辺第一項を展開し、式(7)を導く。

$$\begin{bmatrix} F \cdot D \cdot \frac{\partial C(x,t)}{\partial x} \end{bmatrix}_{0}^{L}$$

$$= F \cdot D \frac{\partial C(L,t)}{\partial x} - F \cdot D \frac{\partial C(0,t)}{\partial x}$$
(7)

ここで式(7)の D・∂C(L,t)/ ∂x は単位時間当たり にコンクリート表面を通過する塩化物イオン量 である。これはコンクリート中に浸透した塩化 物イオン量の総和を時間微分した値 q_t に等しい ため,式(8)が成り立つ。また,供試体中心位置 で塩化物イオン濃度勾配の変化がないため,式 (9)が成り立つ。

$$q_t = D \cdot \frac{\partial C(L,t)}{\partial x} \tag{8}$$

$$\frac{\partial C(0,t)}{\partial x} = 0 \tag{9}$$

式(8)および式(9)によって表される境界条件を 考慮に入れ, C(x,t)を任意関数 F(x,t)として選べば, 式(6)は式(10)に書き換えられる。

Fig.10 The change in properties of chloride ion concentration by drying at 500C with time

JSCE-G572-2003

$$D\int_{0}^{L} \left(\frac{\partial C(x,t)}{\partial x}\right)^{2} dx$$

$$= C(L,t) \cdot q_{t} - \int_{0}^{L} C(x,t) \cdot \frac{\partial C(x,t)}{\partial t} dx$$
(10)

式(10)より Dを導くと式(11)となる。

$$D = \frac{C(L,t) \cdot q_t - \int_0^L C(x,t) \cdot \frac{\partial C(x,t)}{\partial t} dx}{\int_0^L \left(\frac{\partial C(x,t)}{\partial x}\right)^2 dx}$$
(11)

式(11)によって、一軸方向の浸透を受ける角柱供 試体の拡散係数 D を求めることができる。

Fig.12 の b) は軸対称の浸透を受ける円柱供試体の概念図である。一軸方向の浸透を受ける角柱 供試体と同様にして,軸対称の浸透を受ける円柱 供試体の一次元拡散方程式は式(12)となり,式 (13)から拡散係数を求めることができる。

$$\frac{\partial C(r,t)}{\partial t} = \frac{1}{r} D \cdot r \cdot \frac{\partial^2 C(r,t)}{\partial r^2}$$
(12)

$$D = \frac{C(R,t) \cdot r \cdot q_t - \int_0^R C(r,t) \cdot r \cdot \frac{\partial C(r,t)}{\partial t} dr}{\int_0^R r \cdot \left(\frac{\partial C(r,t)}{\partial r}\right)^2 dr}$$
(13)

ここで,式(13)において,∂C(r,t)/∂rは,Fig.7 およびFig.8の塩化物イオン量を距離で微分する ことで求まる。また,∂C(r,t)/∂tは,Fig.9 および Fig.10 の塩化物イオン量を時間微分することで 求まる。従って,式(13)に含まれる項の値が実験 値より求めることができる。

式(11)および式(13)を用いて、2 種類の浸透条 件における拡散係数を求めた。その結果、劣化 を受けていないコンクリートの円柱供試体と角 柱供試体の拡散係数は $2.19 \times 10^{-5} \text{ mm}^2/\text{sec} \ge 2.02$ × $10^{-5} \text{ mm}^2/\text{sec}$, 500°Cの乾燥を受けたコンクリ ートの円柱供試体と角柱供試体の拡散係数は $8.40 \times 10^{-5} \text{ mm}^2/\text{sec} \ge 7.49 \times 10^{-5} \text{ mm}^2/\text{sec} \ge 2.02$ だ。供試体形状の違いによる算定値に大きな差 が見られず、本提案式の理論的妥当性が伺える。

Fig.7, 8, 9 および Fig.10 から,式(13)を用い て求めた拡散係数を Fig.13 の白抜きに示す。浸 せき初期の塩化物イオン浸透量が大きい劣化を 受けたコンクリートの拡散係数は,劣化を受け ていないコンクリートの拡散係数より大きくな っている。また,500℃の乾燥を受けたコンクリ ートより 105℃の乾燥を受けたコンクリートの 方が塩化物浸透性に対する劣化の程度が大きい ことを示している。

4. まとめ

- 任意時間,任意場所における塩化物イオン 量算出に用いるための塩化物イオン拡散係 数を求める新しい算定式を提案した。
- 2.1つの浸せき期間から求めた拡散係数から は劣化の特性を表すことは困難であった。
- 浸せき期間を考慮した提案式から求めた拡 散係数は、劣化の違いを表すことができ、 特に劣化を受けたコンクリートの初期浸透

Fig.12 Condition of intrusion

Fig.13 Diffusion coefficient by suggested and JSCE's education

特性を考慮した拡散係数が算出できた。

参考文献

- 古澤靖彦:コンクリート中の物質移動評価 に関する研究の現状、コンクリート工学、 Vol.37, No.4, pp.3-11, 1999.4
- ALDEA C-M, SHAH S P, KARR A.: Effect of cracking on water and chloride permeability of concrete, J Mater Civ Eng, Vol.11, NO.3, pp.181-187, Aug.1999
- 竹田宣典, 十河茂幸: 凍害あるいは中性化 を受けたコンクリートの塩化物イオン浸透 性, コンクリート工学年次論文報告集, Vol.25, No.1, pp.797-802, 2003
- 4) 田澤榮一,佐伯 昇:コンクリート工学・微 視構造と材料特性,技報堂出版株式会社, pp.140-143, 1998.10
- 5) コンクリート構造物の火災安全性研究委員 会報告書,日本コンクリート工学協会, pp.94-102, 2002.6