論文 曲げ破壊する鉄筋コンクリート造梁の寸法効果に関する研究

桐生 博也^{*1}·中西 三和^{*2}·安達 洋^{*2}

要旨:本研究は,寸法効果の原因を破壊力学的な概念を用いて説明した Hillerborg の仮説 を確認するため,試験体寸法を変動因子として,曲げ破壊型の鉄筋コンクリート造単筋及び 複筋梁の2点載荷実験を行い,最大耐力や変形性能に及ぼす試験体寸法の影響について検討 した。また,寸法効果を考慮した Hillerborg の仮説に基づいた応力 歪曲線を用いた分割 要素法(ファイバー法)による鉄筋コンクリート造梁の弾塑性解析を行い実験結果と解析結 果との比較から Hillerborg の仮説の適用の妥当性を確認した。

キーワード:鉄筋コンクリート,梁,寸法効果,ファイバー法

1. はじめに

近年,鉄筋コンクリート(以下 RC)構造物は新 材料の開発や建設技術の向上などに伴って,大 型化する傾向にあるが,設計式の基礎となる実 験データは,実験装置等の容量の制約を受ける ため、縮小モデル試験体によるものが多く、寸 法効果の影響を明らかにする必要がある。一般 にコンクリートの応力 歪曲線の最大強度以降 の軟化域の形状はシリンダー供試体高さに依存 することが知られている。RC 造梁にも同様に寸 法に起因するとされる現象が見られる。その原 因の一つとして圧縮領域の局所的な歪の増大が 挙げられる。この現象に着目した Hillerborg¹⁾ はRC造梁の強度や変形性能に及ぼす寸法効果を 圧縮領域のコンクリートにおける局所的な歪の 増大に伴う破壊が原因と考えた。すなわち,コ ンクリートの応力 歪関係の最大強度以降の軟 化域の形状は RC 造梁の圧縮領域の高さに依存す ると仮定し,強度や変形性能に及ぼす寸法効果 を説明した。本研究ではHillerborgの仮説を確 認するために,試験体寸法を変動因子として, 曲げ破壊型の RC 造単筋及び複筋梁の2 点載荷実 験を行い,最大耐力や変形性能に及ぼす試験体 寸法の影響について検討を行なった。また,寸 法効果を考慮したHillerborgの仮設に基づいた 応力 歪曲線を用いた分割要素法(以下ファイ バー法)による RC 造梁の弾塑性解析を行い実験 結果と解析結果との比較よりHillerborgの仮説 の適用の妥当性を検証した。

2. Hillerborg の仮説

2.1 コンクリートの応力 - 歪関係

Hillerborg の提案する一軸圧縮応力下のコン クリートの応力 歪関係は,破壊力学理論の概 念から次の二つの局面に別け寸法効果を表現で きるものとした。まず,最大強度までの上昇領 域とその領域に起きる除荷経路については,一 様な損傷を経験し,変形は試験体寸法に依存し ない歪として表されるとした。一方,最大強度 以降の軟化域においては,コンクリートの変形 はある領域に局所的に集中し,それ以外の領域 は除荷され変形は減少する。したがって,軟化 域の応力-歪曲線の特性がコンクリートの局所 変形領域を含む破壊領域長さに依存するため, 応力-変位曲線で表すことが適切な表現となる。 図-1にこれらの関係を概念的に示した。最大応

*1 日本大学大学院 理工学研究科 海洋建築工学専攻 (正会員)

*2 日本大学教授 理工学部海洋建築工学科 工博 (正会員)

-325-

力度までの上昇領域及び除荷経路の応力 - 歪 (<u>____</u>)関係を図 - 1 (a)に,最大応力度以降 の軟化域の応力 - 変位(_- _)関係を図 - 1 (b)に,これら2つの関係を組み合わせた応力-歪(______。)関係を図 - 1 (c)に示す。図 - 1 (a) の。は応力度のピーク点から除荷経路を辿って 応力度 。が0になった時の歪である。また図 -1 (b)の uは,軟化域の応力度 oが0になった 時の変位を表す。今,一軸圧縮応力を受けるコ ンクリートの基準化長さを Lとすると,軟化域 の応力度 。が0の時の,平均歪 」は式(1)で表 される。終局時の平均歪 」は,応力-歪曲線の 軟化域の形状を決定するパラメーターとみなす ことができ,基準化長さLはコンクリート試験 体の一軸圧縮試験などの場合,試験体寸法に一 致することを意味している。

2.2 RC 造梁への適応

図 - 2 に一軸圧縮応力と同様の状態を, RC 造 梁の圧縮領域に模擬した場合における,破壊領 域の局所化概念図を示す。一軸圧縮応力を受け る場合と同様に,コンクリートの圧縮領域につ いて圧縮応力が梁の材軸方向にのみ働いている として,RC 造梁の圧縮領域に式(1)の応力 歪関 係を適用する。

$$\varepsilon_u = \varepsilon_o + \omega_u / L \tag{1}$$

ここで,Hillerborg は軟化域を平均化する長さ Lを圧縮領域の高さCに等しいとしており,平均 ひずみ 』における最大応力度にあたる点から除 荷経路により得られるひずみ 。を省略し,簡略 化した式(2)として平均ひずみを表現した。

$$\varepsilon_u = \omega_c / L \tag{2}$$

Hillerborgの仮説によると,。は材料特性とし て一定値を持ち,普通強度のコンクリートに対 して。= 3mm,高強度コンクリートに対して 1mm が与えられている。この仮説に従うとするなら ば,応力-歪曲線の軟化域の形状は圧縮領域高 さCに依存することになり,梁高さDが高くな れば終局時の」は小さくなり軟化域の負勾配は 急になる。したがって RC 造梁は脆性的な挙動を 示すようになる。逆に梁高さ D が低くなれば軟 化性状は緩やかとなることが明らかである。

3. 実験概要

3.1 試験体概要

図 - 3 に試験体寸法及び配筋詳細を,表 - 1 に その構造諸元を示す。また,試験体記号の説明 を表 - 1 の欄外に示した。実験を行った試験体は, 曲げモーメントー定区間(以下曲げスパン)にあ ばら筋を配しない単筋梁(S)と複筋梁(D)でそれ ぞれ釣合鉄筋比以下(Pt=0.7)と釣合鉄筋比以上 (Pt=2.1)の場合,また同区間にあばら筋を配し た複筋梁(DS)で釣合鉄筋比以上の場合,計5シ リーズに対しそれぞれ寸法の異なる4体,計20

である。材料入手の都合上,鉄筋比を一定にす ることができなかったため,上記の鉄筋比を目 標値とし力学的鉄筋比(Pt・_{SY}/_B)が一定とな るように設計した。なお,DSシリーズの曲げス パンのスターラップは最小補強筋量である PW=0.2%とした。

3.2 使用材料

表 - 2 にコンクリート調合表,表 - 3 にコンク リート材料特性,表 - 4 に鉄筋引張試験結果を示 す。セメントには普通ポルトランドセメントを, 細骨材には最大骨材粒径 5mm の山砂を使用した。 本実験では粗骨材寸法の試験体に及ぼす影響を 考慮して細骨材のみを使用し,粗骨材は使用し ていない。コンクリートの圧縮試験は 5 と 10 の大小 2 つの供試体について行なった。また, 鉄筋引張試験結果より力学的鉄筋比を求め目標 値とした値の誤差 15%以内の範囲にあることを 確認した。

3.3 載荷方法及び測定方法

載荷方法は,1/1 スケールには2000kN,1/2 ス ケールには500kN,1/4,1/8 スケールには100kN のオイルジャッキを用い,梁の支持を単純支持 し2点載荷実験を行った。載荷点及び支点と試 験体との接触面積を相似則に従い変化させた。 たわみ曲線を測定するために3本のストローク 式変位計を曲げスパンの下端に設置した。曲げ 一定区間のコンクリートの伸縮量を測定するた めに 1/1,1/2 スケールでは,圧縮縁及び引張縁 を 8 区間に分割し,パイ型ゲージを設置した。 また,1/4,1/8 スケールでは 16 枚のコンクリー トゲージを貼付け歪の測定を行った。さらに試 験体の中央,載荷点の圧縮,引張主筋にひずみ ゲージを貼付け,主筋の歪を測定した。

表-2 コンクリート調合表

			•			
試験体 シリーズ	設計強度 (N/mm ²)	W/C比 (%)	水 (kg/m ³)	セメント (kg/m ³)	細骨材 (kg/m³)	
Aタイプ	25	57	255	407	1533	
Bタイプ	21	59	280	479	1473	
Cタイプ	21	77	290	376	1504	

	表 - 3	コン	クリー	ト材料特性	ŧ
コンクリート タイプ	試験体寸法 (cm)	材令 (日)	圧縮強度 (N/mm ²)	強度時ひずみ (%)	弾性係数 (N/mm ²)
<u></u>	$5\phi imes 10$	48	33.4	0.32	2.29×10^{4}
A917	$10\phi \times 20$		29.0	0.31	2.00×10^{4}
ロタイプ	$5\phi imes 10$	14	24.0	0.17	2.16×10^{4}
- 120	$10\phi imes 20$		21.8	0.21	2.10×10^{4}
いねイプ	$5\phi \times 10$	41	19.0	0.16	1.94×10^{4}
0347	$10\phi \times 20$		19.4	0.19	1.89×10^{4}

表 - 4 鉄筋引張試験結果

鉄筋	降伏強度 (N/mm ²)	降伏歪 (%)	弾性係数 (N/mm ²)	引 張 強 度 (N / m m ²)
D25	357	0.19	1.88 × 10 ⁵	527
D19	372	0.20	1.86×10^{5}	526
D13	335	0.18	1.86×10^{5}	498
D10	458	0.24	1.91×10^{5}	616
D 6	456	0.23	1.98×10^{5}	584
D 4	327	0.17	1.92×10^{5}	508
D 3	368	0.20	1.84×10^{5}	519

表 - 1 構造諸元

試験体	試験体寸法 B×D×L(L')(cm)	引張 鉄筋	Pt (%)	σ_{SY} (N/mm ²)	$\sigma_{sy'}$ (N/mm ²)	圧縮 鉄筋	Pc (%)	σ_{CY} (N/mm ²)	コンクリート	力学的 力 鉄筋比 鉄	力学的 鉄筋比 (実験値)	せん断スパン		曲げスパン					
				(,				(,	717	(日信旭)	(夫歌旭)	スターラッフ	Pw(%)	スターラッフ	Pw(%)				
S071	-	4-D19	0.7	350	372	-	-	-	A	0.10	0.11	0.11 0.13 2-D10@200	0.4	なし	_				
D071			0.7	330		2-D19	0.4	350	В	0.12	0.13								
S211	$30 \times 60 \times 540(600)$	6-D25	25 2.0	350	357	-	-	-	Α	0.27	0.28	0.28 0.33 0.33 4-D13@100) 1.2	なし	-				
D211						0.040	0.4	350	В	0.33	0.33								
D211S						2-019	0.4		С	0.33	0.33			2-D13@360	0.2				
S072		3-D10 0	0.040	0.5	400	450	-	-	-	Α	0.08	0.10	0.00@100	0.4	<i>t</i> >1				
D072			0.5	0.5	0.5	0.5	0.5	400	458	2-D10	0.4	400	В	0.10	0.12	2-D6@100	0.4	40	-
S212	$15 \times 30 \times 270(300)$	300) 6-D13			335	-	-	-	Α	0.28	0.26	4-D6@50	1.2	なし					
D212			2.0	350		2-D10	010 0.4	400	В	0.33	0.31				-				
D212S									С	0.33	0.31			2-D6@180	0.2				
S074		2-D6	0.00	0.00	2-D6 0.6	2-D6 0.6	400	450	-	-	-	Α	0.10	0.12	0 40@50	0.4	<i>t</i> >1		
D074			0.0	0.6			0.0	400	400	2-D6	0.6	400	В	0.12	0.14	$2-\phi 3@50$	0.4	4L	-
S214	7.5 × 15 × 135(150)					-	-	-	Α	0.27	0.30			<i>t</i> >1					
D214		5-D6	5-D6 1.	1.7	400	456	0 06	0.7	0.7 400	В	0.32	0.36	4− <i>φ</i> 3@25	1.2	なし	-			
D214S											2-00	0.7	400	С	0.32	0.36	1		2-¢3@90
S078	3-D 3.75 × 7.5 × 67.5 (75) 5-D	3-D3 0		0.8	070	000	-	-	-	Α	0.09	0.12	0 40 005		4.1				
D078			3-03 0		0.8	0.8	0.8	0.8	0.8	2/0	308	2-D3	0.6	270	В	0.09	0.15	2-φ2@25	0.4
S218		.5 × 67.5 (75)					-	-	-	Α	0.28	0.33			451				
D218		5-D4	2.5	280	327	0.00	0.6	070	В	0.34	0.39	4- <i>ϕ</i> 2@12.5	1.2	なし	_				
D2100	1	1					2-D3	0.0	2/0	0	0.24	0.20	T		0 40@45	0.0			

B:試験体幅 D:試験体高さ L:支点間距離 L':試験体長さ Pt:引張鉄筋比 Pc:圧縮鉄筋比 Pw:あばら筋比 _{sy}':引張鉄筋降伏強度実験値 _{sy}:引張鉄筋降伏強度 _{cy}:圧縮鉄筋降伏強度

力学的鉄筋比(理論値):Pt・_{sr}/_B(B:コンクリート設計強度)力学的鉄筋比(実験値):Pt・_{sr}'/_B

4. 実験結果

4.1 破壊状況

図 - 4 に最終破壊状況を示す。破壊形式はいず れも典型的な主筋降伏後の曲げ圧縮破壊である。 それぞれの試験体のひび割れ状況を 全ての試験体を同じ寸法にして比較してみると, 寸法の大きい試験体ほど試験体全般にわたりひ び割れが発生しており,ひび割れの本数も多く, ひび割れの間隔も狭い。また,鉄筋比の高い試 験体の方が鉄筋比の低い試験体に比べてひび割 れ本数も多く,ひび割れ長さが短い。シリーズ の違いによる比較では Sシリーズ Dシリーズ, DS シリーズの順にひび割れ本数が増加する傾向 にある。最終的な圧壊の状況については試験体 寸法の違いによる顕著な差異は認められないが, 鉄筋比の高い試験体の方が梁高さ方向に向かっ て圧縮領域が拡大している。

4.2 強度と変形

表 - 5 に実験結果一覧を,図 - 5 に基準化した 曲げモーメントと部材角関係を示す。なお表中の 最大変位 max とはコンクリートの圧壊などによ り生じる荷重の急激な低下が認められたときの 変位である。各試験体の降伏荷重,最大荷重を示 す。また各試験体の最大変位とその時の部材角を 示す。降伏荷重の実験値と計算値の比(Py/Pycal) に,試験体寸法や鉄筋比の違いによる差異は顕著 に現れていない。また,最大荷重と降伏荷重の比 (Pu/Py)は試験体寸法が小さくなるに従い大きく なっている。この傾向は複筋梁のDシリーズ,DS シリーズで顕著に現れている。図 - 5 より,降伏 後の塑性変形挙動は,すべてのパターンにおいて 寸法の小さい試験体ほど靭性があることがわか る。図 - 6 に最大変位時の部材角と梁高さの関係 を示す。各試験体の部材角から寸法が小さくなる にしたがい変形性能が増していることがわかる。

図 - 4 最終破壊状況

5. ファイバー法による弾塑性解析

寸法の影響を考慮した応力-歪関係を RC 造 梁の圧縮領域のコンクリートの構成則とした ファイバー法による変位増分弾塑性プログラ ムを作成し解析を行った。

6. 解析概要

6.1 解析モデル

図 - 7 に RC 造梁における解析の概念図を示 す。実験において用いた単純支持形式の梁を, 対称条件から片持ち梁としてモデル化し,材端 における荷重 - 変位関係を求める。図中 y cを,実際の梁中央部における変位として実験 値との比較を行う。本解析では、部材の平面保 持が成立するとし、各要素の材軸方向の曲率を 一定とした。要素分割は、部材材軸方向に3分 割、断面を10分割した。剛性方程式の誘導は、 文献2に従った。

6.2 材料の構成則

図-8にコンクリートと鉄筋の構成則を示す。 コンクリートの構成則は,上昇領域においては パラボラ曲線を適用し,軟化域においては、計 算された中立軸位置から圧縮領域高さを求め、 それを L として Hillerborg の仮説にあてはめ直 線近似した。従って、解析ステップごとにLは 逐次変化するものとしている。鉄筋の構成則は, tri-linear 型モデルを用いた。また,Dシリー ズでは圧縮鉄筋を含むコンクリートの要素が, コンクリートの最大圧縮ひずみに到達すると, 鉄筋は座屈するとして,座屈応力度まで耐力低 下する構成則を採用した。ただし,圧縮鉄筋の 座屈応力度は,座屈長さを2点載荷の区間とす る Euler 座屈により算定した。DS シリーズで は,座屈長さを曲げスパンに配したスターラッ プ間隔とした。

7. 実験結果と解析結果との比較

図 - 9 に荷重 - 変位曲線の実験結果と解析結 果を比較して示す。Hillerborg は、ある特定 の実験結果に対しては普通コンクリートで

表 5 実験結果一覧									
試験体	Py (kN)	Pycal (kN)	Py/Pyca I	Pu (kN)	Pu/Py	δmax (mm)	部材角		
S071	231.7	209.4	1.11	253.8	1.10	102.49	0.057		
S072	45.9	44.6	1.03	52.2	1.14	95.91	0.107		
S074	15.7	13.3	1.18	19.8	1.26	56.55	0.126		
S078	4.1	3.0	1.38	5.2	1.26	35.02	0.156		
D071	203.1	209.4	0.97	209.9	1.03 1.21	152.56	0.085		
D072	52.8	44.6	1.18	64.1		104.94	0.117		
D074	13.2	13.3	0.99	16.5	1.25	63.04	0.140		
D078	4.1	3.0	1.37	5.3	1.29	49.91	0.222		
S211	515.7	535.2	0.96	541.0	1.05	48.3	0.027		
S212	140.6	134.1	1.05	145.8	1.04	29.2	0.032		
S214	35.2	35.4	0.99	39.3	1.12	22.2	0.049		
S218	10.7	8.7	1.23	11.9	1.11	13.01	0.058		
D211	464.0	535.2	0.87	474.8	1.02	56.00	0.031		
D212	122.7	134.1	0.92	131.9	1.07	34.18	0.038		
D214	30.6	35.4	0.87	36.3	1.19	29.06	0.065		
D218	8.2	8.7	0.95	10.2	1.24	17.12	0.076		
D211S	499.8	535.2	0.93	537.0	1.07	52.10	0.029		
D212S	134.3	134.1	1.00	134.6	1.00	39.98	0.044		
D214S	32.3	35.4	0.91	36.2	1.12	34.98	0.078		
D218S	8.3	8.7	0.95	9.8	1.18	18.47	0.082		
D _v , · R	多代方舌	Pvcal.	修供 荷言	= (7/Q .		• d + 11	留中、		

図 - 8 各材料の構成則と鉄筋の座屈応力度

cを3mm、高強度コンクリートで1mm とするこ とで寸法効果を説明し得るとしているが、それ が一般的なものであるかを検証するにはいたっ ていない。しかし、この仮説に従うとするなら ば,本解析において求まった最も適切な сの 値は、つりあい鉄筋比以下と以上のシリーズで、 それぞれ 0.8mm、0.2mm となり、両シリーズ共通 の数値を得るには至らなかった。しかし、シリ ーズごとには寸法の違いによる性状の違いを c-定とする Hillerborg の仮説で説明できるこ とが確認された。

8. まとめ

Hillerborg によって仮定されたコンクリート の圧縮領域における応力 - ひずみ関係の妥当性 を検証するために行った, RC 造梁の曲げ弾塑性 解析及び実験結果から以下の知見が得られた。

寸法の影響を

考慮した構成則を適用したファイバー法による RC 造梁の解析結果から, 釣合鉄筋比以上・以下 のいずれの梁においても強度・変形性能に寸法 効果が現れる。

2)この解析結果に現れた強度・変形性能に対す

る寸法効果は、実験結果と同じ傾向を示した。 ・以上のことから, Hillerborg の仮説は, 寸法 効果を説明しうることが確認された。 謝辞

本研究は、文部科学省学術フロンティア推進事業(日本大学理 工学部)・研究課題「環境防災都市に関する研究」(研究代表者: 理工学研究所所長 大津岩夫,実行委員会委員長 石丸辰治)の一 環として実施したものである。ここに感謝の意を表します。ま た本研究を行うにあたりご指導頂いた積水ハウス(株)山下靖氏 に心より感謝の意を示します。

参考文献

- 1) A.HILLERBORG : SIZE DEPENDENCY OF THE STRESS STRAIN CURVE IN COMPRESSION PROC . OF THE INTERNATIONAL RILEM WORKSHOP.JUNE, 1989
- 2) 北島圭二,安達洋,神田亮,小泉達也:2方向入力を受ける 鉄筋コンクリート造柱の弾塑性解析,コンクリート工学年次 論文報告書

