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ABSTRACT: An experimental program was conducted to investigate diagonal cracking behavior in 
reinforced and partially prestressed concrete beams under static loading by focusing on the influences of 
compressive stress in concrete due to prestress and stirrup spacing on maximum diagonal crack widths. 
Relationship between diagonal crack widths and crack displacements in stirrup direction was also 
examined. Test results have shown that crack displacements along stirrup direction had a linear 
relationship with stirrup strains. In partially prestressed beams, prestressing bars were found to have an 
important effect on controlling shear crack widths apart from the amount of stirrups. 
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1. INTRODUCTION 
 

Cracks of excessive width in concrete structures may be safe from a viewpoint of strength design 
but are often unacceptable for serviceability considerations as they are unsightly and may lead to a public 
concern. Further, wide cracks allow water to penetrate into the structures and may cause corrosion of 
embedded steel reinforcements, which adversely affect the long-term durability performance. Extensive 
research studies on the cracking behavior of reinforced concrete (RC) and partially prestressed concrete 
(PPC or PRC) beams have been conducted over the last 50 years. Most of them, however, are concerned 
with the flexural cracking behavior; little work has been done on the diagonal cracking [1].  

Mechanism of diagonal cracking is more complex than cracking due to axial tension or bending 
because a diagonal crack is generally not perpendicular to the web reinforcement. Previous studies [2-4] 
have shown that strain in web reinforcement is the most important factor affecting the diagonal cracking in 
RC beams. Such parameters include the characteristic of web reinforcement (area, spacing, size, angle 
with member axis and bond property), concrete strength, web width and shear span-to-effective depth ratio. 
In the study by Hassan et al. [2], the crack displacement in stirrup direction (wc,w) was found to have a 
close relationship with the stirrup strain. To estimate the diagonal crack width (wc), the ratio of wc/wc,w was 
proposed and can be determined from the experimental results. 

Another concept for the diagonal cracking is that the diagonal crack width can be estimated by 
multiplying the normal strain perpendicular to the diagonal crack by the diagonal crack spacing [1]. The 
diagonal crack spacing is mainly dependent on the longitudinal and transverse crack spacing, which can be 
calculated from the method to determine crack spacing in a member subjected to uniaxial tension using the 
characteristics of longitudinal and transverse reinforcement, respectively. The recent study by Zararis [5] 
also supports this concept by indicating that the amount of web reinforcement may not be the only factor 
for adequate control of diagonal cracking. It was pointed out that the amount of longitudinal reinforcement 
can have a significant effect on the opening of critical diagonal cracks. 
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2. EXPERIMENTAL PROGRAM 
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Table 2 Properties of reinforcements 
 

Type of 

bar 
Diameter Type 

Area 

(mm2) 

fy  

(MPa) 
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Es x 103 

(MPa) 

D6 31.7 359.0 - 206.7 
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concrete section and were straight-lined along the beam length. The 
level of prestress was varied to produce different compressive stress 
in concrete section (σc,ps) of 2.0 and 4.0 MPa. The mechanical 
properties of reinforcements used are given in Table 2. 

Four-point symmetrical loading with a distance between 
loading points of 400 mm, giving a shear span-to-effective depth 
ratio (a/d) of 3.2, was statically applied to all specimens. Before 
conducting the loading test, contact points (or Demec points) were 
mounted on concrete surface in shear-span regions (see Fig. 2) Two 
sets of contact points with an interval of 100 mm were used to 
measure the crack displacements in horizontal and vertical directions 
with an accuracy of 0.001 mm. By measuring the inclinations of 
diagonal cracks to the member axis, shear crack widths (wc) can be 
determined as shown in Fig. 3. A pocket-type microscope with a 
precision of 0.01 mm was also used to measure diagonal crack 
widths, especially in case that two or more shear cracks penetrate 
into one set of contact points. Strains in each stirrup were taken from 
electrical resistance strain gages, which were attached at three 
different levels with an interval of 50 mm as shown in Fig. 4.  
 
 
3. TEST RESULTS AND DISCUSSION 
 
3.1 CRACK PATTERNS 

Crack patterns at failure of all specimens are 
shown in Fig. 5. It can be seen that flexural cracks 
developed in the mid-span region between loading 
points and in the shear-span regions where diagonal 
cracks occurred subsequently. With increasing load, 
diagonal cracks rapidly widened and propagated 
towards the concrete compression zone under the 
loading points, whereas the widths of flexural 
cracks in mid-span region were almost constant. 
The inclinations of diagonal cracks were taken 
from the average value of crack angles measured 
from several locations where diagonal cracks 
intersect the grid lines in shear-span regions. It can 
be seen from Fig. 5 that the inclinations of diagonal 
cracks slightly decrease in beams with higher 
compressive stress in concrete due to prestress and 
the effect of stirrup spacing was found to be 
insignificant. The failure mode of beams S-1 and 
S-2 (RC) was shear- diagonal-tension type, while it 
was shear- compression failure in beam S-3. All the 
other beams failed in flexural-compression mode 
with yielding of tension reinforcements and occurrence of wide diagonal cracks in shear-span regions.  
 
3.2 SHEAR CRACK WIDTH (wc) 

Fig. 6(a) shows the relationship between load and maximum shear crack width in beams with 
stirrup spacing of 100mm (pw= 0.21%). The load when the crack width starts to increase can be considered 

Fig. 5 Crack patterns  
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as the diagonal-cracking load. It can be seen that the 
higher the compressive stress in concrete due to prestress 
(σc,ps), the greater the diagonal-cracking load. In addition, 
a higher σc,ps causes a reduction in the maximum shear 
crack width at the same load level. This clearly indicates 
the effectiveness of prestress on controlling diagonal 
crack widths in PRC beams. Similarly, the impact of σc,ps 
on shear crack widths was also observed in specimens 
with larger stirrup spacing (s=200mm), as shown in Fig. 
6(b). It is interesting to note that such influence of σc,ps 
on reducing shear crack widths becomes more 
pronounced. This may be due to the larger stirrup 
spacing (or, smaller stirrup ratio) used in these beams, 
hence, the σc,ps plays an important role in resisting shear 
forces induced by external load and effectively controls the shear crack widths..  

By comparing Fig. 6(a) with 6(b), the effect of stirrup spacing on maximum shear crack widths can 
be investigated. In RC specimens, beam S-1 with closer stirrup spacing (s = 100mm) showed a lower rate 
of increase in shear crack widths than that of beam S-2 (s = 200mm). In PRC specimens, however, the 
influence of smaller stirrup spacing on reducing shear crack widths was found to be less pronounced, 
particularly in specimens having σc,ps = 4MPa (S-5 and S-6). Relationship between load and stirrup strain 
(εw) in beams with stirrup spacing of 100 mm is shown in Fig. 7. It can be seen that although beam with a 
higher σc,ps yields a smaller εw at a particular load, the increasing rates of εw are almost identical in both 
RC (S-1) and PRC (S-3, S-5) specimens. This implies that the σc,ps has an influence only on increasing the 
diagonal cracking loads; after the occurrence of diagonal cracks, the increase in stirrup strains seems not 
to be affected by the compressive stress in concrete due to prestress.  
 
3.3 CRACK DISPLACEMENT IN STIRRUP DIRECTION (wc,w) 

Because diagonal crack is not perpendicular to stirrups, shear crack width may not be equal to crack 
displacement in stirrup direction. Previous study by Hassan et al. [2] has shown that, in RC beams 
subjected to static and fatigue loading, the ratio of wc/wc,w was mainly influenced by the angle of stirrup 
and was proposed to be 1.2 for beams with vertical stirrup. To verify this concept, particularly for PRC 
beams, the relationships between wc and wc,w of RC and PRC beams are shown in Figs. 8(a) and (b), 
respectively. It can be seen that while the ratio of wc/wc,w is approximately 1.0 for RC beams, it is slightly 
lower in case of PRC beams (= 0.95). As such, it can be concluded that the ratio of wc/wc,w is not 
significantly affected by the σc,ps and can be assumed to be 1.0 for the specimens used in this study. This 
means that shear crack widths can be directly estimated from crack displacements in stirrup direction, 
which have a close relationship with stirrup strains. This will be discussed in the following section. 

Fig. 6 Load vs. maximum shear crack width 
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Crack displacement in stirrup direction (wc,w) is basically equal to the elongation of stirrup minus 
the elongation of concrete in stirrup direction. Since the concrete elongation is relatively small and can be 
neglected, wc,w is largely dependent on stirrup strains [2]. Cracking behavior of concrete is intrinsically 
random and highly uncertain, hence, it is by no means possible to obtain stirrup strains at locations where 
diagonal cracks cross stirrups. In this study, all available stirrup strains at the locations near diagonal 
cracks were used to plot the relationship between wc,w and εw as shown in Figs. 9(a) and (b) for specimens 
with stirrup spacing of 100 and 200mm, respectively. 

It can be observed from Fig. 9(a) that, at the same stirrup strain, wc,w shows a significant variation 
and greatly differs in each beam. Fitting curves obtained from a linear regression analysis represent the 
relationship between the average values of wc,w and εw. Clearly, wc,w increases with εw in a linear manner 
but with a different rate of increase. Beam S-1 (RC) shows the highest rate of increase, implying that crack 
widths are larger compared to those of PRC beams (S-3, S-5), both of which have nearly the same 
relationship. The reason may be such that prestressing bars, which are provided at the mid-depth of 
concrete sections, may actively restrain the opening of diagonal cracks in longitudinal direction, thereby 
reducing diagonal crack widths. Surprisingly, it can be observed from Fig. 9(b) that beam S-2 (RC) 
registers the least wc,w compared to that of PRC beams (S-4, S-6) at the same stirrup strain. This may be 
caused by errors in obtaining the stirrup strains in beam S-2, in which stirrups yielded rapidly after the 
occurrence of diagonal cracks. The effect of σc,ps on the wc,w-εw relationship in beams with s=200 mm (S-4 
and S-6) was also found to be insignificant, similarly to the case of beams with s=100 mm (S-3 and S-5). 

Fig. 10 shows the relationship between maximum wc,w and εw of all specimens, except for beam S-2. 
It is apparent that the maximum wc,w is linearly dependent on the εw in both RC and PRC beams and, at the 
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Fig. 9 Crack displacement in stirrup direction vs. stirrup strain 
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same stirrup strain, a smaller maximum wc,w is obtained in 
case of PRC beams. Since the impact of σc,ps on the 
maximum wc,w is found to be insignificant, the difference 
in wc,w-εw relationships between RC and PRC beams is 
considered to be caused by the provision of prestressing 
bars at the mid-depth of concrete section. To incorporate 
this effect, a modification factor (Kps) was proposed to be 
a function of diameter (φps) and effective reinforcement 
ratio of prestressing bar (ρr,ps).  

,
, ,4 ; /

3.67 10
r ps

ps r ps ps e ps
ps

K A A
ρ

ρ
φ−= =

×
 (1) 

where Ae,ps is the effective concrete area for prestressing 
bar as shown in Fig. 11. By multiplying the maximum wc,w 
with Kps, the modified maximum wc,w for PRC beams can be calculated and 
plotted as shown in Fig. 10. It should be noted that the modification factor 
Kps was determined to obtain a better fitting curve for the test specimens 
used in this study. Since the test variables and number of specimens are 
limited, it is recommended that further research be carried out to examine 
other parameters, such as type of prestressing steel, distribution of 
compressive stress due to prestress and arrangement of prestressing steel. 
 
 
4. CONCLUDING REMARK 
 

In order to study the effects of compressive stress in concrete due to prestress (σc,ps) and stirrup 
spacing on the diagonal crack width (wc), a test program was conducted on RC and PRC beams under 
static loading. It was found that crack displacements in stirrup direction (wc,w) increased with stirrup 
strains (εw) in a linear manner and the ratio of wc,w/wc was observed to be approximately 1.0 for both RC 
and PRC beams. Use of closer stirrup spacing can greatly reduced shear crack widths in RC specimens, 
however, such effect was less pronounced in PRC specimens. By applying a higher σc,ps, an increase in 
diagonal cracking loads was obtained; nevertheless, it had little influence on the wc,w-εw relationship. The 
presence of longitudinal prestressing bars at mid-depth of concrete section can significantly reduced the 
diagonal crack widths. To account for this impact of prestressing bars, a modification factor Kps was 
proposed to be a function of diameter and effective reinforcement ratio of prestressing bar. 
 

ACKNOWLEDGEMENT 
 
The authors would like to express their gratitude to the Japan Society for the Promotion of Science 

(JSPS) for providing financial support to accomplish this research.  
 

REFERRENCES 
 
1. Adebar, P., “Diagonal Cracking and Diagonal Crack Control in Structural Concrete,” ACI SP-204: Design and 

Construction Practices to Mitigate Cracking, 2001, pp. 85-106. 
2. Hassan, H. M., Farghaly, S. A., and Ueda, T., “Displacements at Shear Crack in Beams with Shear 

Reinforcement under Static and Fatigue Loadings,” Proceedings of JSCE, No. 433, Vol. 15, 1991, pp. 215-222. 
3. Hassan, H. M., Ueda, T., Tamai, S., and Okamura, H., “Fatigue Test of Reinforced Concrete Beams with Various 

Types of Shear Reinforcement,” Transactions of JCI, Vol. 17, pp. 277-284, 1985. 
4. ACI-ASCE Committee 426, “The Shear Strength of Reinforced Concrete Members—Chapters 1 to 4,” 

Proceedings of ASCE, Journal of the Structural Division, Vol. 99, No. ST6, June 1973, pp. 1091-1187. 
5. Zararis, P. D., “Shear Strength and Minimum Shear Reinforcement of Reinforced Concrete Slender Beams,” 

ACI Structural Journal, Vol. 100, No. 2, March-April 2003, pp. 203-214. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 400 800 1200 1600 2000 2400

Stirrup strain (x 10-6)

M
ax

im
um

 w
c, 

w
 (m

m
)

RC
PRC
PRC (Modified)

Fig. 10 Maximum wc,w vs. stirrup strain 

Ae,ps

2.5φps

2.5φps

φps

Fig. 11 Effective concrete area 
for prestressing bar (Ae,ps) 

-732-


