論文 正負交番荷重を受ける RC 柱のせん断ひび割れ幅

大高 正裕^{*1}・林 和彦^{*2}・椿 龍哉^{*3}

要旨:本研究では,RC 柱に発生するせん断ひび割れ幅を実験的に調べた。軸力と帯鉄筋量 をパラメータとした小型 RC 柱供試体の正負交番載荷実験を行い,せん断ひび割れ幅を計測 した。実験結果からせん断ひび割れ幅とせん断力の関係を求め,既往の算定式との比較検討 を行った。その結果,軸力と帯鉄筋量がせん断ひび割れ幅に及ぼす影響を明らかにした。 キーワード:せん断ひび割れ幅,せん断力,帯鉄筋量,軸力

1.はじめに

2.実験概要

2.1 実験供試体

せん断ひび割れが構造物に生じた場合,その 後の使用性,耐久性,および補強,補修の要否 に関する検討方法が必要である。この検討にお いてはせん断ひび割れ幅が重要な要因になると 考えられるがコンクリート標準示方書¹⁾にもせ ん断ひび割れ幅の記述は少ない。そこで,本研 究では RC 柱を対象とした供試体を作製して正 負交番荷重を与え,せん断ひび割れ幅を調べた。 柱部材のため,柱に作用する軸力の大きさと帯 鉄筋量をパラメータとした。 供試体の形状寸法を図 - 1 に,諸元とコンク リートの力学特性を表 - 1 に,鋼材の力学特性 を表 - 2 に示す。

供試体は, せん断スパンと柱断面高さとの比 が3,フーチング部分は1300×400×600mmのも のを各種類1体ずつ作製した。柱部分の軸方向 鉄筋にはD13(SD345)を24本用い,鉄筋比を 3.38%とした。また,帯鉄筋にはD6(SD295A) を用い,100mm間隔の配筋(帯鉄筋比0.21%, 以下H10)と50mm間隔の配筋(帯鉄筋比0.42%, 以下H05)とした。

コンクリートには柱部分では呼び強度 21MPa, フーチング部分では呼び強度 27MPa のレディー ミクストコンクリートを用いた。ともに早強ポ

単位:mm

図 - 1 供試体形状寸法

*1	横浜国立大学大学院	工学府社会学	≧間シス	ステム学専攻(正会員)
*2	横浜国立大学大学院	工学研究院	助手	修(工)(正会員)
*3	横浜国立大学大学院	工学研究院	教授	Ph.D (正会員)

表 - 1 供試体諸元・力学特性

No.	供試体名	軸応力 (MPa)	断面寸法 (mm)×(mm)	有効 高さ (mm)	軸方向 鉄筋 (径)×(本)	軸方向 鉄筋比 (%)	帯鉄筋 (径)-(間隔)	帯鉄筋 比 (%)	圧縮 強度 (MPa)	引張 強度 (MPa)	弾性 係数 (GPa)	ポア ソン 比	降伏荷重 (kN)	最大 せん断 力 (kN)
1	H10-N0	0.0	300×300		D13×24		D6-100mm	0.21	32.2	2.47	27.3	0.189	160	184
2	H10-N2	2.0				3.38			32.3	2.71			160	182
3	H10-N4	4.0		270					30.0	2.83			180	194
4	H05-N0	0.0					D6-50mm	0.42	30.9	2.57	28.1	0.185	140	164
5	H05-N2	2.0							30.8	2.74			160	186
6	H05-N4	4.0							30.2	2.79			180	207

供試体名の付け方

[H10:帯鉄筋間隔 100mm, H05:帯鉄筋間隔 50mm] [N軸応力度(MPa)]

表 - 2 鋼材の力学特性

呼び名	規格	弹性係数 (GPa)	降伏点 (MPa)	降伏ひずみ (µ)
D13	SD345	188	391	2080
D6	SD295A	192	336*	1778

*永久伸び0.2%に対してオフセット法で算出した値 ルトランドセメントを用い,目標スランプは8cm, 粗骨材の最大寸法は 20mm である。

供試体のコンクリートはフーチング部を 2 層 に分けて打ち込み,1日養生した後,柱との接 合部のレイタンス除去を行い,柱部分を4層に 分けて打ち込んだ。また,打込み時には各層毎 に棒状バイブレーターを用いて十分な締固めを 行った。

2.2 載荷方法

載荷には図 - 2 に示す 2 本のアクチュエータ ーを使用し,柱頭部に一定の軸圧縮力を載荷し ながら水平力を作用させた。水平載荷の繰返し は,各管理荷重(変位)で正負1回ずつ行い, 軸方向鉄筋の降伏までは 120kN まで 40kN ずつ 漸増,それ以降は20kN ずつ漸増させた。軸方向 鉄筋の降伏後は,変位制御で回転角1/200rad(水 平変位 4.5mm) ずつ 7/200rad まで増大させた。 軸圧縮力の大きさは平均軸圧縮応力度が 0.0MPa, 2.0MPa, 4.0MPaの3種類である。

2.3 計測方法

各供試体ともに基部より 2B 区間(B は柱断面 幅)までの全ての帯鉄筋の中央部の表裏にゲー ジ長 2mm のひずみゲージを貼り付けた。H05 シ リーズは B (300mm) と 1.5B (450mm), 0.5B (150mm), H10 シリーズには B(300mm)と 400mm, 200mmの部分の帯鉄筋(図-1中の太

図 - 3 ひび割れ幅補正方法

線位置)に中央から 55mm 間隔で計 5 ヶ所の表 裏にひずみゲージを貼り付けた。また,軸方向 鉄筋については南北向き側面の中央の引張鉄筋 基部にひずみゲージを貼り付けた。

ひび割れの観察には, CCD 方式のマイクロス コープ(最大倍率 175 倍)を用いた。せん断ひ び割れの計測は,帯鉄筋にひずみゲージを5ヶ 所貼り付けた高さの線を通るひび割れに対して 各載荷サイクルの載荷時、除荷時に行った。ま た, せん断ひび割れ幅としては, ひび割れ発生 前の対応点間の距離を計測した。それらの値を, ひび割れ上の代表点のずれの角度。で補正し, ひび割れ方向 。に垂直となる線分の長さをせん 断ひび割れ幅とした。その補正方法を図 - 3 に

図-4 載荷時せん断ひび割れ幅

示す.

また,ひび割れ計測をした高さの水平方向に 200mm 間隔で標点を付け(柱中央から各々 100mmの位置),その距離をノギスで計測した。

No.	供試体名	せん断ひび割れ 発生荷重 (kN)	降伏荷重 (kN)	最大荷重 (kN)
1	H10-N0	80	160	166
2	H10-N2	120	160	182
3	H10-N4	120	180	194
4	H05-N0	80	140	164
5	H05-N2	120	160	186
6	H05-N4	140	180	207

表 - 3 実験結果

3.実験結果および考察

載荷実験の結果を表 - 3 に示す。

現在提案されているせん断ひび割れ幅算定式 は載荷時の梁を対象としており,軸力が考慮さ れていないが,それらの式の柱への適用性を確 認するために本実験で計測したデータと算定式 の計算値を比較した。検討した式は,上田らの 予測式²(以下,予測式1)と CEB-FIP Model Code 1990の予測式³⁾(以下,予測式2)である。これ らの式は両式ともにせん断補強筋のひずみより せん断ひび割れ幅を算出する式となっている. 式の概略を以下に示す.

図 - 5 除荷時せん断ひび割れ幅

w=w(wpd); wpd=wpd/Es; wpd=wpd(V)(1) ここに,w:せん断ひび割れ幅,εwpd:せん断補 強筋ひずみ,σwpd:せん断補強筋応力度,Es: せん断補強筋のヤング係数,V:せん断力である.

また,軸方向鉄筋の降伏後は,計算上はせん 断力一定でせん断ひび割れ幅が増加する結果と なり,既往の算定式をそのまま使用することが できない。したがって,本研究では軸方向鉄筋 降伏の前後で分けて考察した。

1本の帯鉄筋に5ヶ所貼り付けたひずみゲージ は,両端の値のばらつきが大きく,中央の3ヶ 所の平均をその補強筋のひずみとした。 3.1 軸方向鉄筋降伏前

(1) 載荷時のせん断ひび割れ幅

せん断ひび割れ幅とせん断力の関係を図 - 4 に示す。ここで,実測値は,各せん断力毎に計 測されたひび割れ幅の平均値を表す.また,予 測式を用いてせん断力から計算した結果(線表 示)と計測された帯鉄筋のひずみから計算した 結果(マーカー表示)も示す。せん断力より計 算したときのコンクリートのせん断耐力計算に は二羽らの式⁴⁾を用いた。予測式1と2はひび割 れ幅が小さい時はよく一致しているが,大きく なるにしたがい予測式1の方が上回る傾向があ

図-6 実測値と計算値の比較

った。なお,同じ高さで計測されたせん断ひび 割れの平均幅は,計測した3点の高さでほぼ同 じ値となった。軸応力度が0MPaの時にはその平 均幅と計算値もよく一致している。また,軸力 が作用すると実測値が計算値を下回る傾向があ るという結果が得られた。

(2)除荷時のせん断ひび割れ幅

除荷後の残留ひび割れ幅と除荷する前の最大 せん断力との関係を図 - 5 に示す。また,除荷 後の帯鉄筋のひずみから,予測式1,2 を除荷時 にも適用して計算したひび割れ幅も示す。除荷 後も載荷時と同様に平均幅を示している。除荷 後は H10-N0 を除いて,実測値が計算値を下回る 傾向が見られた。 図 - 6 に実測値と計算値の比較を示す。これ は計測した全てのひび割れ幅に対して実測値を 計算値で除し,供試体ごとに平均を取ったもの

図 - 7 せん断補強筋ひずみ-せん断ひび割れ幅関係

(3)実測値と計算値の比較

図 - 8 平均ひび割れ幅 - 変位関係

である。載荷時の軸応力度 0MPa の供試体では予 測式は両者ともに近い値を示している。しかし, 軸力が作用すると全ての供試体で実測値は計算 値を下回る結果となった。しかし,2MPa 以上の 平均軸応力度では大きな差は見られなかった。 除荷時では,H10-N0 供試体で大幅に計算値を上 回った他は,ほぼ一定の値を示した。

これより軸力が構造物に作用している場合や 除荷時には,現在提案されているせん断ひび割 れ幅予測式による値は補正する必要があり,図 -6に示したバイリニアの関係(H05の除荷時 は一定値)をその補正値として求めた。

3.2 軸方向鉄筋降伏後

軸方向鉄筋の降伏後は, せん断力がほとんど 増加しないまません断ひび割れ幅が増える挙動 を示す。以下では H10 シリーズの供試体は軸方 向鉄筋の降伏直後に帯鉄筋も降伏したため, H05 シリーズのみを対象とする。

図 - 7 にせん断補強筋ひずみとせん断ひび割 れ幅の関係を示す。軸力が大きい供試体の方が, 同じひずみの時にせん断ひび割れ幅が小さいと いう傾向があることがわかる。これは, 軸方向 鉄筋の降伏に関係なく軸力の影響を受けるとい うことを示している(図中の白抜きのマーカー は軸方向鉄筋降伏前のデータである)。また,図 - 8はノギスで計測した値から平均ひび割れ幅 を計算したものである。標点間増加距離を水平 方向の総ひび割れ幅と考え,標点間の平均ひび 割れ本数が 3 本として,距離の増分をひび割れ 本数で除した値を平均せん断ひび割れ幅とした。 なお, せん断ひび割れ幅を標点間距離を計測し て検討した例としては文献 5)~7) がある。図 -8より軸方向鉄筋が降伏した後,載荷点変位に 比例してひび割れ幅が増加し、また軸力が大き い供試体ほどせん断ひび割れ幅は小さいことが わかる。

4.結論

正負交番荷重が作用する RC 柱のせん断ひび 割れ幅を,作用する軸力の大きさと,帯鉄筋量 をパラメータとして実験的に調べた。本研究で 得られた結論は次のようにまとめられる。

- (1) 軸力が作用する状態ではせん断ひび割れ幅 は増加しにくくなり,既往の予測式による載 荷時の値を補正することが必要である。
- (2) 除荷時の残留せん断ひび割れ幅は,既往の予 測式による値に補正係数を乗じることで求 めることができる。
- (3) 帯鉄筋量はせん断ひび割れ幅の増加に大き く影響を与える。しかし,載荷時の鉄筋位置 における帯鉄筋のひずみとせん断ひび割れ 幅の関係には帯鉄筋量は影響しないことが 確認された。

参考文献

- 1) 土木学会:コンクリート標準示方書[構造性 能照査編],2002
- Hussein, M.H, Sabry, A.F, Ueda, T: Displacements at Shear Crack in Beams with Shear Reinforcement under Static and Fatigue Loadings, Proc. of JSCE, No.433/V-15, pp.215-222, 1991
- CEB: CEB-FIP Model Code 1990, Chapter 15, Thomas Telford, 1993
- 二羽淳一郎,山田一宇,横沢和夫,岡村甫: せん断補強筋を用いないRCはりのせん断強 度の再評価,土木学会論文集,第372号/V-5, pp.167-176,1986年8月
- 松石長之,川西泰一郎,久田祐司,渡邉史夫: 鉄筋コンクリート造梁のせん断ひび割れ幅 制御に関する研究(その1),日本建築学会 大会学術講演梗概集(中国),pp.909-910,1999 年9月
- 6) 柳瀬圭児,大野義照,李振宝,南宏明:鉄筋
 コンクリートのせん断ひび割れ幅,コンクリ
 ート工学年次論文集,Vol.24,No.2,pp.343-348,2002
- 7) 柳瀬圭児,大野義照,中川隆夫:RC および PRC 梁のせん断ひび割れ幅,コンクリート工 学年次論文集,Vol.25,No.2,pp.433-438,2003