論文 制震間柱を有する鉄筋コンクリート造高層建物の耐震性能に 関する研究

大村哲矢*1·林静雄*2

要旨:近年,共同住宅の平面プランの多様化から,平面プランの自由度を大きくするために 柱1本あたりの床支配面積が大きくなってきている傾向が見られる。本論では地震時におけ る柱1本あたりの水平力や損傷を減らすという考えにより,RC造地上33階,地下1階建て 高層建物に制震間柱を採用した場合の耐震性能を把握するものとし,複数モデルについて質 点系非線形時刻歴応答解析を行い,制震間柱は耐震性向上に効果があることを示した。 キーワード:低降伏点鋼,制震間柱,RC間柱,非線形時刻歴応答解析

1. はじめに

近年,共同住宅の平面プランの多様化から, 平面プランの自由度を大きくするために単位 面積あたりの柱の本数が少なくなってきてい る傾向が見られる。鉛直部材である柱1本あ たりの床支配面積を増やすことは、地震時に おいて柱1本あたりの水平力が増えることに 等しい。柱を剛強にするためには材料強度や 柱断面を大きくすることが効果的であるが, 住戸の機能を考慮すると最下階における柱断 面は 1m 角程度と制限を受けることが多い。 柱を剛強にする考え方とは反対に、地震時に おける柱1本あたりの水平力や損傷を減らす という考え方があり,免震構造や制震構造を 採用するケースがみられる。また、低降伏点 鋼を用いた制震デバイスを組み込んだ間柱 (以下,制震間柱)を有する高層 RC 造住宅 の耐震性能に関する研究[1],[2]などが報告され ており、制震間柱を用いることにより建物の 耐震性能を向上させる技術がすすんできてい る。

本論では RC 造地上 33 階,地下1 階建て高 層建物に低降伏点鋼を用いた制震間柱を適用 したモデル,制震間柱を鉄筋コンクリート造 間柱(以下, RC 間柱)に置き換えたモデル, および間柱がないモデルの静的弾塑性解析に よる結果を用いてスケルトンカーブを作成し, 地下1階床を固定とした34質点系非線形時刻 歴応答解析を行い比較検討する。

2. 解析

本論では静的弾塑性解析を行い,得られる 各階層せん断力-層間変形関係において曲げ 変形成分とせん断変形成分に分離し,等価曲 げせん断型(曲げ:弾性,せん断:TAKEDA モデル($\gamma = 0.4$))にモデル化し,質点系非線 形時刻歴応答解析(減衰:瞬間剛性比例型, $h_1=3$ %)を行う。

2.1 解析モデル

図-1 に建物形状,表-1 に使用材料,図-2 に制震間柱を示す。モデルの平面は整形で 38.2×38.2m であり上下左右とも対称である ため X 方向のみ検討を行う。軒高は 107.350m (塔状比 2.8) である。表-2 に解析モデルー 覧を示す。解析モデルは3モデルである。図 -1 は制震間柱付モデルを示している。解析 モデル No.1 の間柱なしモデルは図-1 から制 震間柱を除いたモデルであり,No.2 の RC 間

*1	武蔵工業大学工学部建築学科・助手	博士(工学)	(正会員)
*2	東京工業大学建築物理研究センター・教授	工博	(正会員)

柱付モデルは図-1 のモデルの制震間柱を 600×600mm の RC 間柱に置き換えたモデル である。制震間柱または RC 間柱は X および Y 方向のうちの 1 方向に 4 本が耐震要素とし て機能する。

図-3 に制震間柱付モデルのモデル化を, 図-4 に制震間柱付モデルを等価曲げせん断 バネおよび制震柱のせん断バネヘモデル化す る方法を示す。静的弾塑性解析において制震 間柱のモデル化はスタブの曲げ(コンクリー

強度·種別 材料種別 部位 柱 $Fc=30\sim 60N/mm^2$ コンクリート 梁・スラブ・基礎 Fc=30~48N/mm² 柱·梁主筋 SD490, SD390 フーフ $\sigma_{\rm v}=785 \text{N/mm}^2$, SD295A 鉄筋 スタラッフ $\sigma_v = 785 \text{N/mm}^2$, SD295A スラブ SD295A

表-1 使用材料

-	Ŀ	沪	ル
	~	×	Ŕ.

2~14 階:H-1,250x250x9x25 15~25 階:H-650x250x16x25 ウェブ:LY100, フランジ:SN490B 図-2 制震間柱

表-2 解析モデル一覧

No.	モデル名	間柱
1	間柱なしモデル	間柱なし
2	RC間柱付モデル	RC間柱
3	制震間柱付モデル	制震間柱

図-4 制震間柱付モデルのモデル化方法

表-3 検討用地震動一覧

				1 . 8 . 1			1 . 1 . 2 . 0	
波形名称			レベルコ		1~1/2			
		略称 最	最大加速度	最大速度	解析時間	最大加速度	最大速度	解析時間
			(cm/s^2)	(cm/s)	(sec)	(cm/s^2)	(cm/s)	(sec)
	EL CENTRO 1940 NS	EL CENTRO	255	25.0	53.7	510	50.0	53.7
観測波	TAFT 1952 EW	TAFT	248	25.0	54.3	496	50.0	54.5
	HACHINOHE 1968 NS	HACHINOHE	165	25.0	36.0	330	50.0	36.0
告示波	位相 JMA KOBE	CODE-KO	124 (76)	16.2 (12.0)	120.0	290 (378)	84.8 (51.0)	120.0
()は工学的	位相 HACHINOHE	CODE-HA	125 (86)	14.8 (10.0)	120.0	322 (432)	62.4 (44.0)	120.0
基盤波の値	位相 RANDAM	CODE-RAN	112 (82)	18.3 (12.0)	60.0	271 (376)	65.4 (52.0)	120.0

トのひび割れによる剛性低下を考慮した弾塑 性)およびせん断(弾性)剛性と低降伏点鋼制 震パネルのせん断(弾塑性)剛性を組合せた単 ー線材とした。制震パネルはコンクリートス タブと完全に一体化しているものとする。同 解析から得られる各層の Q- δ カーブは,履 歴特性の異なる制震間柱とその他の RC フレ ームの和になっているため,以下の手順で制 震間柱の $pQ - \delta$ カーブとその他の RC フレー ムの(Q - pQ) - δ カーブに分離し, **図**-3 のモ デルを作成する。

- ①静的弾塑性解析で各層に4本ある制震間柱のせん断力(pQ)をステップ毎に集計して、制震間柱のせん断力を得る。
- ②制震間柱と RC フレームは剛床で一体化していると仮定し静的弾塑性解析の層間変位(δ)は制震間柱の層間変位と同一と考え、制震間柱のスケルトンカーブを得る。制震間柱の履歴特性は歪硬化型バイリニアモデ

ル^[3]とする。

③静的弾塑性解析の層せん断力(Q)から①の制震間柱の層せん断力(pQ)を差し引き, RCフレームの層せん断力-層間変形関係を得る。それを曲げ変形成分とせん断変形成分に分離し、等価曲げせん断バネにモデル化する。(せん断バネのトリリニアへのモデル化は第1折点を初期剛性に対する比率が0.8になった点とし第三勾配は1/50radの接線剛性とし履歴面積が等しくなるように第2折点を設定した。)

表-3 に検討用地震動一覧を示す。検討用 地震動は代表的な観測波 3 波および告示(平 12 建告第 1461 号)に基づく解放工学的基盤 における加速度応答スペクトルに適合するよ うに作成する模擬地震動(以下,告示波)と し,以下,稀に発生する可能性のある地震動 をレベル1地震動,極めて稀に発生する可能 性のある地震動をレベル2 地震動とする。

3. 解析結果および考察

3.1 最大応答層せん断力係数

図-5 にレベル1 地震動による最大応答層せん断力係数を示す。ベースシア係数 C_Bを0.072 とし外力分布形に Ai 分布を用い,レベル1 地震動による最大応答層せん断力係数以上になるような設計用せん断力係数 Ci を設定した。この Ci を用いて地震時外力分布を設定し,静的弾塑性解析を行った結果,4 本の制震間柱および RC 間柱の各階における水平力分担率(各階の間柱が負担する水平力を各階設計用層せん断力で除した値)は静的弾塑性解析結果より求められ,8~12%であった。

3.2 最大応答層せん断力

図-6~8に告示波のレベル1(図中ではL1 と表記)地震動入力時の最大応答せん断力を 示す。3 つのモデルとも解析結果に大きな差 異は見られない。

レベル1地震動を入力した非線形時刻歴応答 解析では制震間柱の効果が小さかったことは、 レベル1地震動に相当する地震外力すなわち 前述の設計用せん断力を地震外力とした静的 弾塑性解析結果において制震間柱の塑性変形 は小さいためであると思われる。観測波3波 は図を省略したが告示波と同様に解析結果に 大きな差異が見られない。

図-9~11 に告示波のレベル 2 (図中では L2 と表記) 地震動入力時の最大応答せん断力を示 す。間柱なしモデルと RC 間柱付モデルはほぼ 差がないが,制震間柱付モデルの最大応答せん 断力が間柱なしモデルに比べ位相: HACHINOHE で最大 21% (14 階),位相: RANDAM で最大 17% (13 階) 小さくなる傾向 が見られる。

3.3 最大応答層間変形角

図-12~13 にレベル 1 地震動入力時の最大 層間変形角を示す。観測波および告示波の合計 6 波とも同様な傾向を示したため、本論では代 表的なグラフとして EL CENTRO および HACHINOHE を 25cm/s に基準化したものを示 した。

制震間柱付モデルの最大応答層間変形角が 少し小さくなる傾向が見られるが、3つのモデ ルとも解析結果に大きな差異は見られなかっ た。このことは3.2節と同じ理由によると思わ れる。

図-14~16 にレベル 2 地震動入力時の最大 応答層間変形角を示す。観測波および告示波の 合計6波の結果を重ね合わせた。観測波より告 示波の最大応答層間変形角が概ね大きくなる 傾向が見られる。

図-17~18 に告示波のレベル 2 地震動入力 時の最大応答層間変形角を示す。RC 間柱付モ デルの最大応答層間変形角が間柱なしモデル に比べ位相:HACHINOHE で最大 17%(15 階), 位相:RANDAM で最大 16%(6 階)減少し, RC 間柱が最大応答層間変形角を抑える効果が 見られる。一般的に建物における RC 間柱はお もに長期荷重時に機能し耐震要素としての機 能は期待せず,本論のように高層建物に RC 間 柱を用いた既往の研究はほとんど見られない が、それを適切な位置にもうけることによりレ ベル2地震動入力時の最大応答層間変形角を抑 制する効果を期待できる。

さらに RC 間柱モデルより制震間柱付モデル の最大応答層間変形角が小さくなり,間柱なし モデルに比べ位相: HACHINOHE で最大 36%

(14 階),位相: RANDAM で最大 29% (12 お よび 13 階)減少し,制震間柱が最大応答層間 変形角を抑える効果がもっとも見られる。

本論の3モデルのうち,制震間柱付モデルの 最大応答層間変形角が最も小さくなる傾向が 見られ,主に間柱を設置した2~25階付近にお いて制震間柱が最大応答層間変形角を抑える 効果があり,建物の損傷低減が期待できると思 われる。

4. 結論

本論では RC 造地上 33 階,地下1 階建て高 層建物に低降伏点鋼を用いた制震間柱を適用 したモデル,制震間柱を RC 間柱に置き換え たモデル,および間柱がないモデルを,地下 1 階床を固定とした 34 質点系非線形時刻歴応 答解析を行い,以下を得た。

- 制震間柱付モデルの簡易的モデル化手法を 示した。
- 告示波のレベル1 地震動入力時の最大応 答せん断力に関して3 つのモデルを比較 したところ大きな差異は見られなかった。
- 3)告示波のレベル2地震動入力時の最大応答 せん断力に関し、間柱なしモデルとRC間 柱付モデルではほぼ差がないが、制震間柱 付モデルでは小さくなる傾向が見られる。
- 4) 観測波 EL CENTRO および HACHINOHE を 25cm/s に基準化した地震動入力時の最大応 答変形角は制震間柱付モデルが少し小さく なる傾向が見られるが,3つのモデルに大き な差異は見られなかった。

- 5) 告示波のレベル 2 地震動入力時の最大応 答層間変形角は 3 モデルのうち制震間柱 付モデルの最大応答層間変形角が最も小 さくなる傾向が見られた。
- 6) 高層建物の適切な位置に RC 間柱をもうけることによりレベル2 地震動入力時の最大応答層間変形角を抑制する効果を期待できる。

参考文献

- [1] 和泉信之,林昌利,兼子修,大井貴之:高強度材料と 制震柱を用いた 36 階建 RC 造住宅の耐震設計,日本 建築学会大会講演梗概集 C2,1998 年 9 月, pp77~78
- [2] 渡部幸宏,和泉信之,清水隆,大井貴之:高強度材料 を用いた高層 RC 造住宅の耐震設計(その3),日本建 築学会大会講演梗概集 C2,1998 年 9 月,pp81~82
- [3] 佐藤工業㈱:制震を適用した SHRC 住宅構造システム の開発,技術研究所報 No.25

