論文 速度依存型ダンパーを用いた純ラーメン多層RC造建物の地震時 応答特性

古間 直希*1・向井 智久*2・衣笠 秀行*3・野村 設郎*4

要旨:本論では,速度依存型ダンパーとして Voigt モデルを用いた場合の多層 RC 造建物 の応答性状を,層が劣化を起こす場合(劣化モデル)を含めて基礎的に検討した。劣化の種 類によって RC 躯体自体の変形の集中則は異なっていたが,ダンパーを付加することで最 大応答変形を小さく抑え,劣化のないモデルとほぼ同等のダンパーの効果が得られた。ま た,劣化のないモデルにおける代表高さの最大応答変形を,筆者らがこれまでに提案して いる入力エネルギー量 ED,繰り返し数 ND を用いて適切に説明できることを確認した。 キーワード:速度依存型ダンパー,Voigt モデル,ピンチングモデル,耐力低下モデル

1. はじめに

速度依存型ダンパーは、風振動等の微振動に 対して制振効果を発揮し、居住性能の向上を可 能にすると共に、地震動に対しても減衰性能を 発揮するとされ、近年耐震性能部材としても用 いられている。通常、ダンパーを取り付ける躯 体は健全な建物を想定していることが多く、RC 構造特有の劣化モデルに対する検討はほとんど ないのが現状である。そこで本論では、劣化が ない健全な RC 建物(以下標準モデル)だけでは なく、劣化を起こす RC 建物(以下劣化モデル) も想定し、速度依存型ダンパーを取り付けた際 の多層 RC 造建物の地震時応答特性について検 討する。

2. 解析概要

2.1 標準モデル

解析建物は、4 層及び 12 層の粘弾性ダンパ ーを有する純ラーメン多層 RC 造建物であり、 せん断多質点系でモデル化する(図-1)。なお、 RC 躯体については文献 1)に示す平面フレーム モデルを対象としている。RC 躯体のせん断多 質点系への縮約手順を以下に示す。

(1)フレームモデルに対して、Ai 分布に基づく
静的非線形解析を行い各層の層せん断力-層間
変形関係(以下 Qi-δi関係)を算出する。

(2)文献 2)の手法を用いて Qi-δi 関係を Tri-linear 化し、各層の降伏時剛性 Keyi 及びせん 断耐力 Qyi,降伏後剛性を決定し、Bilinear 型の 骨格曲線を決定する。

表-1に縮約したせん断多質点系の諸元を示 す。なお, RC 躯体の復元力特性は Degarading-Bilinear モデルとし, 除荷時剛性 K_i'は,式(1) で決定する。

$$K_{i}' = K_{eyi} / \sqrt{\mu} \tag{1}$$

ただし, μ:塑性率

粘弾性ダンパーは、図-1に示すVoigtモデル で表し、各層に付加する。ダンパー部をVoigtモ デルで表すことは、粘弾性ダンパーの振動数依 存特性を考慮できないことになる。しかし既往 の研究として共振時の振動数、フレームの固有 円振動数等に基づきVoigtモデルの設定を行うこ とで、粘弾性ダンパーの実現象をおおよそ捉え ることが出来るとする報告がなされている³⁾⁴⁾。

*1	東京理科大学ナ	大学院生 理	工学研究科建築	学専攻	
*2	独立行政法人	建築研究所	構造グループ	研究員	博(工)
*3	東京理科大学	理工学部建	築学科 助教授	工博	
*4	東京理科大学	理工 学部建:	筑学科 教授	て博	

これらの研究結果に基づけば、Voigt モデルを 用いた建物モデルに対して応答性状を把握する ことは十分に意味があるものと考えている。

ダンパーの剛性を示す弾性バネ(以下ダンパ ー剛性部)は剛性 Kdi, を有し, ダッシュポット の粘性係数は Cdi である。ダンパーの粘性係数 Cdiは式(2)で決定する。

$$C_{di} = 2h_d \frac{K_{eyi}}{\omega_{ey}}$$
(2)

ただし、hd:ダンパーの減衰定数,

ωey: RC 躯体の降伏時固有円振動数 表-2に標準モデルの解析パラメータを示す。 使用地震動は El Centro1940 NS成分(以下 ELCE), JMAKobe1995 NS成分(以下 KOBE), Taft 1952 EW成分(以下TAFT)を最大地動速度 が25,50,75cm/sに基準化して用いる。また, ダンパー剛性部の RC 躯体の降伏時剛性に対す る比 γ d(γ d=Kdi / Keyi), ダンパーの減衰定数 hd をパラメータとする。なお、劣化モデルを扱う 場合, RC 躯体の粘性減衰は初期剛性比例型が 多く用いられているが,初期剛性の値が応答結 果に大きく影響を与えるという報告もなされて いる。本論ではダンパー付加による応答の変化 に着目するため,粘性減衰の影響が応答結果を 変化させることを避け、標準モデル、劣化モデ ル共に減衰定数を0%とする5)。

2.2 劣化モデル

劣化型の復元力特性としては、図-2に示す ピンチング及び耐力低下の復元力特性を有する モデルを用いる。

(a) ピンチングモデル

降伏後の繰り返し履歴において除荷後せん断 力が 0 になった後(図-2(a), A 点), 剛性 Ks で再載荷される。剛性 Ks は式(3)で決定する。

$$K_{s} = \frac{Q_{D}}{(\delta_{D} - \delta_{0})} \cdot \left(\frac{1}{\mu}\right)^{\lambda}$$
(3)

ただし、δD:経験した最大応答変形,

δ₀: せん断力が 0 時の変位

Op:経験した最大応答せん断力

本論においては、λ=0.5とする。

	表-	-1 せん	断多質	点系
		モデ	ル概要	
لالتيني	層	Keyi (kN/m)	Qy (kN)	W(kN)
	4	46089	660	1475
4. State of the second s	3	37069	960	1159
	2	38881	1176	1159
	1	47853	1320	1191
		(a) 4層	モデル	
	層	K _{eyi} (kN/m)	$Q_y(kN)$	W(kN)
	12	93111	814	1671
42000	11	106547	1218	1406
interne	10	110864	1555	1406
	9	113204	1844	1406
	8	117647	2099	1406
	7	133232	2327	1406
	6	125223	2539	1406
	5	133129	2720	1406
	4	147377	2892	1406
	3	154256	3103	1406
図-1 せん断多質占	2	153263	3348	1406
ロー この町夕夏二 玄エデル	1	232559	3426	1429
ホーノル			·	

~	モデ	ル概要	
層	Keyi(kN/m)	$Q_y(kN)$	W(kN)
4	46089	660	1475
3	37069	960	1159
2	38881	1176	1159
1	47853	1320	1191
(a) 4層モデル			
層	K _{eyi} (kN/m)	$Q_y(kN)$	W(kN)
12	93111	814	1671
11	106547	1218	1406
10	110864	1555	1406
9	113204	1844	1406
8	117647	2099	1406
7	133232	2327	1406
6	125223	2539	1406
5	133129	2720	1406
4	147377	2892	1406
3	154256	3103	1406
2	153263	3348	1406
1	232559	3426	1429
(b)12層モデル			

表-2 解析パラメータ(標準モデル)

層数	4層,12層
地震動の種類	ELCE, KOBE, TAFT
地震動のレベル	25cm/s, 50cm/s, 75cm/s
$oldsymbol{\gamma}$ d	0.2, 1.0
hd	5%, 20%

図-2 劣化層の復元力特性

表	~-3 劣化モデル	の復元力特性
	ピンチングモデル	耐力低下モデル
劣化層	図−2(a)	Ramberg-Osgood ($\beta = -0.1$)
劣化層以外	Degarading-Bilinear	Ramberg-Osgood ($\beta > 0$)

(b) 耐力低下モデル

全層について Ramberg-Osgood モデルとし(表 -3参照),耐力低下層の降伏後の耐力低下の程 度を降伏後剛性に対する降伏時剛性 Keyiの比β (**図**-2(b))で表す。 β の値は実験等を用いた詳 細な検討が必要であるが、本論は基礎的な検討 であることから、地震応答解析結果及び文献 6) を参考にし,耐力低下層でβ=-0.1と仮定する。 また劣化層は,曲げ柱及びせん断柱が混在し, 層の耐力が低下後も曲げ柱によりある程度のエ

ネルギー吸収が見込めるものを想定している。

なお、ピンチングモデルは劣化層以外は Degarading-Bilinear モデルである(表-3参照)。 また耐力低下モデルにおいて、全層の耐力低下 が起きない場合の応答性状が標準モデルの応答 性状に近くなるように Ramberg-Osgood カーブ のパラメータを決定している。

解析建物としては4層建物を扱う。劣化層は, ピンチングモデルでは3層,耐力低下モデルは 1,3層とする。なお,劣化層として3層を対 象としているのは,4層モデルにおいて3層が 最も層間変形が大きかったためである。また, 表-4に劣化モデルの解析パラメータを示す。

3. 標準モデルの動的応答特性

図-3は ELCE, 75cm/s の解析ケースにおけ る各層の最大応答変形 δ maxi, 入力エネルギー EDi, 履歴吸収エネルギー THDEi, ダンパーの 粘性減衰吸収エネルギー TVDEi について, ダ ンパー付加前の解析結果と共に示している。

まずδmaxi に着目する。RC 躯体の粘性減衰 を0%としているため、ダンパー付加前は4,12 層モデルそれぞれにおいて変形が集中する層が 確認できる(4層モデル:3層,12層モデル:11 層)。しかし、ダンパーを付加することで δ maxi は低減され、変形が集中する層は見られなくな る。特にダンパーの減衰定数haが大きい場合, δ maxi は低減されている。また、ここに示した ケースにおいては、 γ dの値の違いにより δ maxi の大きな変化は見られず, γ dが増加すること で必ずしも応答は低減されないと言える。次に EDi について見ると、ダンパー付加前は 4, 12 層モデル共に中間層の EDiの値が大きいが、ダ ンパーを付加することで上層部の EDi が大きく なる傾向が見られる。次に THDEi について見 ると, まずδmaxi との相関性が確認できる。ま た12層, ha=20%の際に THDEi が各層でほぼ0と なり, RC 躯体が弾性となっていることが分か る。最後に TVDEi について検討する。最下層 に近づくに従い, TVDEiの値が大きい。また,

表-4 解析パラメータ(劣化モデル)

層数	4層
地震動の種類	ELCE, KOBE, TAFT
地震動のレベル	50cm/s
γ d	0.2
ha	5% 20%

この傾向は hd が大きくなるほど顕著である。 続いて繰り返し数 NDi について検討する。 既往の研究により NDi は次式で算出できる。

$$ND_i = \frac{ED_i}{\Delta E_{maxi}}$$

ここで、ΔEmaxi とは、単位時間 Δ T の間のエネ ルギー入力量の 最大値である。 なお本論ではΔ T を、各層の正負 最大応答変形点 に基づく割線剛 性を用い、固有

(4)

値解析により算出して求められる周期 T₁ とした。図-4は同じく ELCE, 75cm/s の解析ケースにおける各層 ND_i 分布を示している。4, 12 層モデルそれぞれにおいておおよそ各層の ND_iの値は一定である。また, 12 層モデルにおい

てダンパー付加前,及びha=5%の際に上層のNDi が他の層と比べ小さな値となる傾向が見られる が,ha=20%の際はおおよそ各層は一定であり,ha が大きくなるほど各層のNDiは一定となる傾 向があるといえる。以上の傾向は他の地震動に おいても見られた。

4. 劣化モデルの動的応答特性

4.1 ダンパー付加前の応答特性

図-5及び図-6は、(a) ELCE 50cm/sにおける ピンチングモデル, (b) ELCE 50cm/s における 3 層耐力低下モデル, (c) KOBE 50cm/s における1 層耐力低下モデルについて, 各層の最大応答変 形δmaxi, 入力エネルギー EDi, 履歴吸収エネ ルギー THDEi を,劣化なしモデルの応答値と 共に示す。また、図-7に劣化モデルにおける 劣化層の層せん断力-層間変形関係(Qi-δi関係) と劣化なしモデルの Qi-δi 関係を比較したもの を示す。まず、ピンチングモデル(図-5,6(a)) について見ると,劣化モデルと劣化なしモデル の EDiの値がおおよそ等しいにも関わらず,劣 化モデルの4層のδmaxiが大きな値となっている。 これは、3 層がピンチングすることでエネルギ 一吸収性能が低下し、4 層でその分のエネルギ 一吸収を補ったためであると考えられる。そこ で図-6(a)において THDEiの値を確認すると、 劣化なしモデルと比較し3層の THDEi の値が小 さくなり,4層の THDEiの値が大きくなってお り,前述のことが確認できる。また,図-7(a) において劣化層 (3 層)の Qi-δi 関係を確認する と,劣化モデルのピンチング現象が確認できる。

次に 3 層耐力低下モデル(図-5, 6(b))につ いて確認する。ピンチングモデルと同様,劣化 の有無に関わらず EDi の値はおおよそ等しい が,δ maxiは劣化層である 3 層に集中しており, THDEiによるエネルギー吸収も 3 層で大きい。 したがって耐力低下モデルは,ピンチングモデ ルと違い,吸収できなくなったエネルギーを他 の層に分散させるのではなく,劣化層が変形す ることによりエネルギー吸収するものと考えら

れる。その結果 δ maxi は大きくなり,損傷が劣 化層に集中する。図-7(b)により劣化層(3 層) の Qi- δ i 関係を確認すると,劣化モデルの耐力 低下が確認でき,劣化のないモデルと比較し, 正側で最大応答変形が大きくなり,片寄りが生 じている。最後に,1層耐力低下モデル(図-5, 6(c))について確認する。EDi の値は,劣化モ デルの方が小さな値であるが,3層低下モデル と同様,劣化層である1層の δ maxi が大きくな りかつ THDEi の値も大きいことが分かる。ま た,3層の δ maxi は小さくなっている。

4.2 ダンパー付加後の応答特性

図-8は、3章の図-3で示したものと同じも のを、図-5及び図-6で示したケースについて 示している。また、図-9は、劣化層の Qi-δi 関係を、劣化なしモデルの Qi-δi 関係と共に示 している。まず(a) ピンチングモデルについて 検討する。 δ maxi に着目すると, hd が大きくな ることで δ maxi の低減が見られ, ダンパーの効 果を確認できる。またエネルギー応答性状は, **図**-3における標準モデル(ダンパー付加後)の 応答性状と類似しており,上層の EDi が大きい こと,下層で TVDEi が大きいことが確認でき る。また,**図**-9(a) により劣化層の Qi- δ i 関係 を確認すると,最大変形が小さく抑えられるこ とで,劣化なしモデルと履歴形状はおおよそ等 しく,ピンチングモデルにおいても効果的にダ ンパーが機能していると言える。

次に耐力低下モデルについて検討する(図-8 (b)(c))。ダンパー付加前は、劣化層において 大きな変形の集中と共に, THDEi が大きな値と なっているが、ダンパー付加により損傷の集中 が緩和されてる。エネルギー応答性状も、上層 の EDi が大きく, 下層で TVDEi が大きいこと が確認でき、図-3の標準モデルの応答性状と 類似している。耐力低下により損傷の集中があ る建物に対して、粘弾性ダンパーを用いること が有効であると言える。図-9(b)により Qi-δi 関係を確認すると、やや劣化モデルの最大変形 が劣化なしモデルと比べ大きくなっているもの の,耐力低下モデルにおけるダンパーの有効性 が確認できる。また、図-10に3層耐力低下モ デル, ELCE 50cm/s, ha=5%の解析ケースにおけ る劣化層のダッシュポット部負担せん断力-層 間変形関係(以下 Qdi-δ i 関係)及び劣化なしモ デルの Qdi-δi 関係と共に示す。図-10より劣 化モデルと劣化なしモデルの Qdi-δ i 関係の形 状はおおよそ等しく,劣化層内においてもダン パーが有効に機能していることが分かる。

5. エネルギー設計法の為の基礎的検討

5.1 最大応答変形とED, NDとの関係

本項では、標準モデルに着目し、代表高さ(1 次の刺激関数 1 β u=1.0)の応答変形について検 討を行う。図-11は、ELCE における代表高さ の最大応答変形,建物全体の総入力エネルギー、

レベル別に示している ($\delta \max / \delta \max, EDr/EDo$, NDr/NDo)。まず最大 応答変形 $\delta \max$ につい て見ると, hd が大きく なることで, $\delta \max$

大きく低減している。しかし、4 層モデル、 75cm/s入力、(a) γ d=0.2、hd=5%(図中点線部)の ようにダンパー付加によりδrmaxが大きくなる

ケースも存在する。これはダンパー付加による ED, NDの変化を検討することで理解できる。 ED が小さくなることは当然応答変位低減につ ながり,ND が大きくなることは同じ入力エネ ルギー量をND サイクルに分けて吸収すること が出来るため、応答変位低減につながる。4 層 モデル, 75cm/s入力, (a) y d= 0.2, hd=5%のケー スは,ND にほとんど変化が見られず,ED が 増加し、かつダンパーの粘性減衰効果がhd=5% と比較的小さいため、δrmax が大きくなったと 考えられる。これと比較して、同じパラメータ (a) y d=0.2, hd=5%の12層モデルにおいては, ND に変化が見らないのは4層モデルと同様である が, ED の変動がほぼないため、付加されたダ ンパーの粘性減衰効果によってδrmaxが低減さ れている。このように、ED、NDを用いて代表 高さの最大応答変形について適切に説明できる。 5.2 弾性応答スペクトルによるED, NDの推定

5.1では、代表高さの最大応答変形が ED、ND の値により大きな影響を受けていることを確認 した。本項では、粘弾性ダンパーを有する多層 RC 建物の ED、ND の値と、弾性応答スペクト ルとの相関性を見る。図-12は 5、20%の ED、 ND スペクトルと共に、多層 RC 建物における 応答値 ED、ND を地震動のレベル別に示して いる。なお、多層建物の周期には3章に示した 周期 T1 を用いている。図-12より、ha=5%の 応答値は ha=20%の応答スペクトル上に、ha=20%の 応答値は ha=20%の応答スペクトル上に近い値 を示す傾向がある。本論における塑性化の程度 (塑性率 3 以下)であれば、多層 RC 建物の ED、 ND の値は ha の値の等しい 1 質点系の弾性応答 から推定できると言える。

6. まとめ

本論では、速度依存型ダンパーとして Voigt モデルを用いた場合の多層 RC 造建物を対象と し、RC 建物の劣化の有無に着目した検討を行 い、劣化モデルに対しても速度依存型ダンパー が有効であることを確認した。

参考文献:1)古間直希,向井智久,衣笠秀行,野村 設郎:エネルギー釣り合いに基づく純ラーメン RC 建物の制振補強設計手法, コンクリート工学年次論 文集, Vol.25, No.2, pp.13-18, 2003, 2) 織裳慎一郎, 向井智久,衣笠秀行,野村設郎:等価1質点系モデ ルを用いた RC 造ピロティ建物の制振補強設計手法 に関する研究,コンクリート工学年次論文集, Vol.24, No.2, pp.1183-1188, 2002, 3) 笠井和彦, 大熊潔: Kelvin 体による粘弾性ダンパー制振構造の簡易時刻 歴解析、パッシブ制振構造シンポジウム 2001、 pp.257-270, 2001, 4) 石井正人, 北村春幸, 和田章, |笠井和彦 : 粘弾性型制振部材付き架構のモデル化に 関する検討,日本建築学会構造系論文集,第531号, pp.55-62, 2000, 5) 既存建物の耐震診断・耐震補強 設計マニュアル 2003, 建築研究振興協会, 付録 9-5, 付録 9-17, 6) 丸橋奈々子,本上忠,梅村恒,市之瀬 敏勝:層せん断余裕率を用いたエネルギー法による RC 骨組の耐震安全性検証,構造工学論文集, Vol.49B, pp.203-208, 2003