論文 SRC 造内柱梁接合部のせん断耐力算定に関する実験的検討

北野 敦則*1・後藤 康明*2・城 攻*3・原藤 清佳*4

要旨:鉄骨鉄筋コンクリート造柱梁接合部の耐震性能に関して,既に当研究室が提案した終 局せん断耐力修正式について未検討であった柱鉄骨断面形状及びコンクリート強度を変数 とする平面十字形柱梁接合部のせん断実験によって以下の知見を得た。柱鉄骨にH型断面を 使用した場合,H型鋼を直交に組み合わせた十字型断面と比較して最大耐力の低下が見られ た。また,高強度コンクリートを用いた場合,修正式において過大評価となるため,修正式 における RC 負担項を再検討し、新たな終局せん断耐力算定式を提案した。 キーワード:鉄骨鉄筋コンクリート造,柱梁接合部,終局せん断耐力,コンクリート強度

1. はじめに

鉄骨鉄筋コンクリート(以下SRC)造柱梁接合 部のせん断破壊に関する実被害としては,1995 年の兵庫県南部地震において初めて報告され¹⁾, あらためてSRC造柱梁接合部の性能評価の重要 性が示された。著者らはこれまでにSRC造柱梁接 合部の実験を行い,日本建築学会SRC規準式²⁾と 実験値の不適合性を指摘し,既報の実験データ を用いた統計解析から接合部せん断耐力は,コ ンクリート,接合部ウェブ,直交フランジ及び 枠効果の4つのせん断抵抗要素で評価できると して修正式を提案してきた³⁾。

本研究では検討が不充分であったコンクリー ト強度,および未検討であった H 型鋼を柱鉄骨 に使用した場合の修正式の妥当性を実験的に検 討し,精度の高い SRC 造内柱梁接合部のせん断 耐力算定法を提案することを目的とする。

2. 実験概要

2.1 試験体

図 - 1に試験体概要,表 - 1にコンクリートの力学的特性,表 - 2に鉄筋の力学的特性,表
 - 3に鋼材の力学的特性,表 - 4に試験体諸元

を示す。

試験体は,多層多スパン SRC 矩形ラーメンの 中間階内柱梁接合部を想定し,柱梁の中央反曲 点位置で切り出した実大の約 1/2 縮尺スケール 平面十字形の試験体である。基準試験体(柱鉄骨 断面十字型,コンクリート設計強度(F_c) = 30N/mm²)に対する実験変数を柱鉄骨断面H型, F_c=60N/mm²,100N/mm²とし,計4体製作した。 全試験体とも接合部せん断破壊を想定し,接合

表 - 1 コンクリートの力学的特性

試験体	圧縮強度	歪度	割裂強度	ヤング係数
	(N/mm ²)	(µ)	(N/mm ²)	(10^{3}N/mm^{2})
SRC-1-WH10	94.0	3630	4.13	33.5
SRC-7S	32.8	2740	5.32	25.2
SRC-7S-H6	64.5	2730	3.83	31.5
SRC-7S-H10	93.5	3420	5.19	35.1

表 - 2 鉄筋の力学的特性

	降伏強度	降伏歪度	ヤング係数	伸び率
	(N/mm ²)	(µ)	$(10^{3}$ N/mm ²)	(%)
6	353	1710	207	18.3
D10 SD685	752	3690	204	12.2
D13 KSS785	957	7130	168	8.90
D22 SD685	697	5750	155	10.6

	表 - 3	趟 板0	リフ字的特	恎
	降伏強度	降伏歪度	ヤング係数	伸び率
	(N/mm ²)	(µ)	$(10^{3}$ N/mm ²)	(%)
PL-4.5	283	1480	194	21.9
PL-9	287	1530	187	22.8
PL-16	347	1730	200	20.1

*1	北海道大学大学院	工学研究科社会基盤工学専攻	助手 工修 (正会員)
*2	北海道大学大学院	工学研究科社会基盤工学専攻	助教授 工博(正会員)
*3	北海道大学大学院	工学研究科社会基盤工学専攻	教授 工博(正会員)
*4	北海道大学大学院	工学研究科社会基盤工学専攻	大学院生(非会員)

部せん断耐力が柱と梁の曲げ耐力よりも下回る ように設計した。SRC に内包した鉄骨の負担分 を明確にするために柱鉄骨 H 型の鉄骨試験体に ついても加力実験を行った。

鉄筋は,柱主筋に 12-D10(SD685)を使用した。 コンクリート設計強度が 30N/mm²,60N/mm²の 試験体は梁主筋に1段目に 4-D13(KSS785),2段 目に 4-D10(SD685)を,コンクリート設計強度 100N/mm²の試験体には 8-D22(SD685)を使用し た。せん断補強筋は全て -6 (SR345 相当)を 使用した。 鉄骨は全試験体とも,柱梁フランジに板厚 16mmのSN490材を,柱梁ウェブ及び柱直交フ ランジにはそれぞれ板厚4.5mmと9mmのSS400 材を使用し,柱は組立十字型鋼またはH型鋼の 強軸方向,梁は組立H型鋼とし,接合部は梁貫 通型としている。

2.2 加力方法

図 - 2 に加力装置を示す。加力は地震時にお ける内柱梁接合部の応力状態を再現するため上 下柱に一定軸力(1/6・b・D・σ_B)を導入した後, 柱頭部反曲点に強制水平変位を与える一方向正 負漸増繰り返し加力を行った。骨組の柱反曲点 位置をピン支持,梁の反曲点位置をピン・ロー ラー支持とした。

加力制御は,±3 サイクルピーク時を接合部 終局せん断耐力計算値(SRC 規準式)の 80%に至 るように設定し, ±1,2 サイクルの加力はそ の 1/3 ずつ増分する荷重制御とし, ±4 サイクル は±3 サイクルにおけるピーク変位の繰り返し 加力とした。それ以降のサイクルは,+3 サイ クルピーク時の柱頭変位 を基準変位として, ピーク変位が n× (n=2,3,4,6)となるよう に n=2,3,4 は 各 2 回, n=6,8,10 は 各 1 回 とする変位制御による繰り返し加力を行った。 鉄骨のみの試験体は, SRC 試験体実験時に計測 した内部鉄骨の接合部せん断変形角で制御した。 計測方法は各ステップ毎に,荷重と反力および 柱,梁,接合部パネルの相対変位,主要位置で の鉄筋および鉄骨の歪などの計測を行い記録し た。

3. 実験結果及び考察

3.1 破壊性状

図 - 3,4に最終破壊状況の例を示す。すべ ての試験体で接合部せん断破壊を生じた。柱鉄 骨H型の基準試験体(SRC-7S)は層間変形角(R_c) = 0~10×10⁻³rad付近で梁曲げ亀裂が発生した が,その後梁の亀裂発生,伸展はなく,接合部 せん断亀裂の発生が顕著となり最大耐力に達 した。最大耐力後は,接合部パネルで剥落が生 じたが耐力低下はわずかであった。 F_{c} = $60N/mm^2,100N/mm^2$ とした試験体(SRC-1-WH10, SRC-7S-H6, SRC-7S-H10)も同様の亀裂状況を 示したが,SRC-1-WH10 は R_c =50×10⁻³rad以降に 梁付け根の圧壊が見られた。また3体共に接合 部パネルと柱梁付け根での剥落が生じたが, SRC-7S-H10 では下柱コーナーの剥落が顕著で あった。

3.2 柱せん断力 - 層間変形角関係

図 - 5 に柱鉄骨断面 H 型試験体の柱せん断

図 - 2 加力装置図

図-3 最終破壊状況(SRC-1-WH10)

図 - 4 最終破壊状況(SRC-7S-H10)

カ (Q_c) - 層間変形角(R_c)関係のスケルトンカー ブの比較を示す。初期の剛性低下は接合部せん 断初亀裂の発生が原因であり,その後鉄筋降伏 (せん断補強筋),接合部内の鉄骨ウェブ及び直 交フランジの降伏,接合部せん断亀裂の拡幅, 接合部パネルコンクリートの剥落などにより 徐々に剛性低下している。また,最大耐力と初 期剛性はコンクリート強度が高いほど大きい が,最大耐力時の層間変形角は小さくなる傾向 がある。普通強度(F_c = 30N/mm²)のコンクリート を用いたSRC-7Sは最大耐力後の耐力低下割合 は小さい。それに対し高強度(F_c = 60N/mm²及び 100N/mm²)のコンクリートを用いたSRC-7S-H6 及びSRC-7S-H10 は最大耐力後の耐力低下割合 が大きい。

3.3 耐力

表 - 5,表 - 6に接合部せん断初亀裂耐力及 び終局せん断耐力一覧,表 - 7に各耐力算定式 の説明,図 - 6に実験値と計算値の比較を示す。 (1)接合部せん断初亀裂発生耐力

表 - 5より,実験値と計算値²⁾の対応は概ね良 い対応を示している。

しかし,柱鉄骨形状にかかわらず,コンクリ ート強度が増加するに従い,計算値が実験値を 過大に評価する傾向がある。SRC規準式ではコン クリートの引張強度を 1/10F。としており,日本コ ンクリート工学協会編コンクリート便覧⁵)

図-5 柱せん断力 - 層間変形角

ではコンクリートの引張強度は,圧縮強度が 40N/mm²ぐらいまでは,その1/10~1/13となり, この比率は,圧縮強度が高いほど小さくなると 説明している。更に,友澤らの研究⁶⁾では,圧縮 強度が100~120N/mm²の高強度コンクリートに なると,その比率は1/20に近づくという。これ らのことからも高強度コンクリートを用いた場 合の引張強度を過大に評価しているため,実験 値が計算値よりも小さくなったと思われる。

(2) 接合部終局せん断耐力

ここでは柱鉄骨十字形の基準試験体 SRC-1-W⁴⁾を加えて検討を行う。実験値は正負加

試驗休夕	В	$_{exp}Q$	$Q_{cs}(kN)$	$_{cal}Q_{cs}$	$_{exp}Q_{cs}/_{c}$	al Q_{cs}
	(N/mm^2)	+	-	(kN)	+	-
SRC-1-WH10	94.0	90.0	93.0	116.8	0.77	0.80
SRC-7S	32.8	72.8	20.0	57.3	1.27	0.35
SRC-7S-H6	64.5	95.5	95.8	95.4	1.00	1.00
SRC-7S-H10	93.5	110.0	110.0	115.3	0.95	0.95
				AVERAGE	1.00	0.78

表 - 5 せん断初亀裂発生耐力一覧

化 0 ビル町町/J 見	表 - 6	せん	断耐刀	一覧
--------------	-------	----	-----	----

					<i>7</i> 0		
	実験値		AIJ式 ²⁾	1	修正式 3)	今回	回提案式
試験体名	exp Q cu	call Q_{cu}	$0 \neq u0$	$_{cal2}Q_{cu}$	0 / n0	cal3 Q_{cu}	0 / n0
	(kN)	(kN)	exp & cu′ call & cu	(kN)	exp & cu′ cal2 & cu	(kN)	exp & cu′ cal3 & cu
SRC-1-W ⁴⁾	188	151	1.25	178	1.06	169	1.11
SRC-1-WH10	249	178	1.40	311	0.80	287	0.87
	AV	ERAGE	1.32		0.93		0.99
SRC-7S	146	96	1.52	126	1.16	124	1.18
SRC-7S-H6	203	123	1.65	223	0.91	177	1.15
SRC-7S-H10	237	147	1.61	275	0.86	218	1.09
過年度試験体	AV	ERAGE	1.59		0.98		1.14

1X	
柱せん断力と接合部せん断力との関係	今回の提案式(cal3)
$_{cal}Q_{c} = \left\{ \frac{1}{\left(l{mc}d / _{mB}d\right) \cdot h/l - 1} \right\} Q_{j}$	$Q_j = {}_{rc}Q_{j_2} + {}_{w}Q_j + 0.9{}_{f}Q_j + 0.5{}_{fr}Q_j$
接合部せん断初亀裂発生耐力2)	$_{rc}Q_{j2} = 0.86\sigma_{B}^{0.77}{}_{c}A$ (柱鉄骨が H 形の場合)
$Q_{j} = 0.1 \cdot \sigma_{B} \cdot b \cdot b \cdot b \cdot d \cdot (1 + \beta)$ $\beta = (15 t_{B} \cdot c d) / (b \cdot b \cdot d)$	$_{rc}Q_{j2} = 0.84\sigma_{B}^{0.81}{}_{c}A$ (柱鉄骨が十字形の場合)
接合部終局せん断耐力	記号
SRC相進式 ²)(cal1)	_B :コンクリート強度(N/mm ²)
$O = \begin{cases} V \left(E - \delta \right) + 1 \\ 2 V \left(E - \delta \right) $	rcQj:RC部負担剪断力(kN)
$\mathcal{Q}_{j} = \left({}_{c} \mathcal{V}_{e} \left({}_{j} \mathcal{F}_{s} \cdot {}_{j} \mathcal{O} + {}_{w} \mathcal{P} \cdot {}_{w} \mathcal{O}_{y} \right) + 1.2 {}_{s} \mathcal{V} \cdot {}_{s} \mathcal{O}_{y} / \sqrt{3} \mathcal{V}_{mB} d$	_w Qj·接合部鉄骨ウェブの剪断力(kN)
$_{c}V_{e} = _{c}b + _{B}b/2_{mB}d \cdot _{mc}d$	${}_{f}\!Q_{j}$:接合部鉄骨直交フランジの剪断力(${ m kN}$)
$V = t_{1} \cdot t_{2} \cdot d \cdot d + 2t_{1} \cdot b_{2} \cdot d$	_f ,Q _j :鉄骨枠効果せん断力(kN)
F = min(0.12E.18 + 2.6E./100)	_c A:柱梁接合部のコンクリート有効断面積(mm ²)
$_{j}F_{s} = \min(0.12F_{c}, 18 + 3.0F_{c}/100)$	
修止式 ³ (Cal2)	_{sw} y:接合部鉄骨ウェブの降伏応力度(N/mm ²)
$Q_j = {}_{rc}Q_j + {}_{w}Q_j + 0.9{}_{f}Q_j + 0.5{}_{fr}Q_j$	_{f y} :接合部鉄骨直交フランジの降伏応力度(N/mm ²)
$_{rc}Q_{j}=_{c}A_{e}\cdot0.39\cdot\sigma_{B}$	<i>b_{fr}:柱梁鉄骨フランジ幅(mm)</i>
$_{w}Q_{i} = _{sw}\sigma_{v}/\sqrt{3}\cdot A_{w}$	t _f : 柱梁鉄骨フランジ幅(mm)
$Q_{1} = c\sigma /\sqrt{3} \cdot A_{2}$	_{fr y} : 柱梁鉄骨フランジ降伏応力度(N/mm ²)
$j \sim j j = y (j)$:枠効果形状係数(ここでは =8)
${}_{fr}Q_{j} = (\alpha \cdot b_{fr} \cdot t_{fr}^{2} \cdot {}_{fr} \sigma_{y}/4)_{mB}b$	その他の記号は SRC 規準と同じ

力を通しての最大値を扱う。図 - 6より実験値 とSRC規準式による計算値とを比較すると 柱鉄 骨に十字型を用いた場合,実験値/計算値の平均 が 1.32,柱鉄骨に強軸方向H型鋼を用いた場合, 1.59 となり,どちらの場合も過小評価となって いる。修正式においては柱の鉄骨形状にかかわ らず普通強度 ($F_c=30N/mm^2$)の場合,安全側に 評価され,実験値との対応も良い。しかし,コ ンクリート強度が高くなるにつれて危険側の評 価となる傾向がある。 $F_c=100N/mm^2$ の試験体の場 合,実験値と計算値の比は 0.80 と 0.86 となり, コンクリートのせん断強度が適切に評価できて いないことが分かる。

そこで SRC試験体の実験値と純鉄骨試験体の 実験値の差をRC負担分とし,それを接合部の有 効断面積で除し,接合部におけるコンクリート のせん断強度を求めた。図-7,8にコンクリ ート強度と接合部コンクリートせん断強度の関 係を示す。なお,柱鉄骨が十字型の試験体には 過年度試験体⁷⁾を含めて考察した。横軸にコンク リート強度,縦軸にコンクリートせん断強度を とり回帰分析を行った結果, ^Bで評価され回帰 式が最も相関性が高いため,修正式のコン クリーと負担項を下記のように修正した。

柱鉄骨がH型の場合

$$_{rc}Q_{j}=0.86 \ _{B}^{0.77} \cdot _{c}A$$
 (1)
柱鉄骨が十字型の場合

$$_{rc}Q_{j}=0.84 \quad {}_{B}^{0.81} \cdot {}_{c}A$$
 (2)

日本建築学会のRC造靭性保証型設計指針⁷⁾に おいて柱梁接合部のコンクリートせん断強度が ^{B^{0.7}で与えられており,SRC造の場合鉄骨によ るコンクリートの拘束効果が含まれることを考 えると,この式は妥当であると考えられる。}

表 - 6 および図 - 9 に今回提案した設計式に よる計算値と実験値の比較を合わせて示す。柱 鉄骨が十字型の場合,コンクリートに高強度 ($\sigma_B>60N/mm^2$)を用いた試験体の実験値にバラツ キがあるため,実験値と計算値の対応はそれほ ど改善されていないが,柱鉄骨にH型を用いた試 験体は実験値と計算値の対応が改善された。

4. 結語

SRC 造柱梁接合部終局せん断耐力修正式にお いて未検討であった高強度コンクリート及び柱 鉄骨断面を変数として試験体を製作し,その適 応性の検討を目的とした加力実験によって以下 の知見を得た。

1)柱梁接合部終局せん断耐力の計算値は柱鉄 骨がH型や十字型で普通強度コンクリートを用 いると,当研究室既往の修正式で適切に評価で きるが,高強度コンクリートを用いた場合は耐 力を過大に評価し危険側になる為,修正式のRC 負担項の係数を検討し,新たな式を提案した。

2)高強度コンクリートを用いた場合,普通コ ンクリートに比べて初期剛性や最大耐力は上 昇するが,最大耐力に達する層間変形角は小さ く,その後の耐力低下が顕著である。

謝辞

高強度コンクリートの製造にあたり,札幌テ ィーシー生コン㈱および山宗化学㈱に多大なご 協力を頂いた。

参考文献

1)日本建築学会:「阪神·淡路大震災と今後の RC 構造設計」,1998

 2)日本建築学会:「鉄骨鉄筋コンクリート構造計 算規準・同解説」,2001

3) A.Kitano, O.Joh and Y.Goto, "Investigation on Stress-Transfer Mechanism of SRC Interior Beam-Column Joints", 12thWorld Conference on Earthquake Engineering, Auckland, 2000, Paper ID:1835

4) 横山 隆明,北野 敦則ほか:SRC造内部柱梁 接合部のせん断抵抗性能に及ぼす水平断面形状の 影響(その1,その2),日本建築学会大会学術講 演梗概集(関東),C構造2,pp377~380,1993.9 5)日本コンクリート工学協会編:コンクリート便 覧,1996

6) 野口 貴文,友澤 史紀:高強度コンクリート

の圧縮強度と各種力学特性との関係,日本建築学 会構造系論文集,No.472,pp.11~16,1995.6 7)日本建築学会:鉄筋コンクリート造建物の靭性 保証型耐震設計指針・同解説,1999 8)北野 敦則,城 攻:SRC造柱梁接合部のせん 断応力伝達に及ぼす影響要因に関する検討,コン クリート工学年次論文集,Vol.24,No.2,pp1333~1338, 2002