論文 短繊維補強された RC はりのせん断耐力に関する研究

児玉 亘^{*1}·大寺 一清^{*1}·二羽 淳一郎^{*2}

要旨:現在では,多くの種類のコンクリート補強用短繊維が開発されているが,それぞれの 繊維を使用した RC はりのせん断耐力を適切に評価できる手法は確立されていない。本研究 では,短繊維補強が,RC はりのせん断耐力に与える影響を検討し,破壊力学特性と斜めひ び割れの幅・角度を用いて,せん断耐力推定手法の提案を行った。そして,せん断耐力を妥 当な精度で推定できることを確認した。また,鋼繊維と合成繊維を同時に使用することで, 鋼繊維を単体で使用するよりも,破壊力学特性・せん断耐力が大きくなることを確認した。 キーワード:短繊維補強,鋼繊維,破壊力学特性,せん断耐力,斜めひび割れ

1. はじめに

短繊維補強コンクリートは,コンクリートの 弱点である引張挙動下における破壊力学特性が 改善され,変形性能および靭性に富んだ複合材 料である。現在では,特に,剥落防止を目的と してトンネル覆エコンクリートや高架橋上部構 造に利用されている。しかし,短繊維補強コン クリートの効果は剥落防止だけでなく,RC はり におけるひび割れ発生・進展の抑制効果¹⁾や,せ ん断耐力向上効果²⁾などが報告されている。

現在では,多くの種類のコンクリート補強用 短繊維が開発されており,それぞれの繊維を使 用した RC はりのせん断耐力は異なる。しかし, それを適切に評価できる手法はなく,繊維混入 率 1.0~1.5%の鋼繊維補強コンクリートに関し てせん断耐力推定式が提案されている²⁾程度で ある。また,寸法や形状が異なり,新たに開発 される様々な繊維に対し,それぞれせん断耐力 式を設定することは非現実的であり,構造部材 として短繊維補強コンクリートを使用していく ためには,汎用性の高い,せん断耐力推定手法 が必要である。

本研究では,破壊力学的知見に基づき,短繊 維補強された RC はりのせん断耐力推定手法を 提案することを目的として,RC はりのせん断試 験を行った。 2. 実験概要

2.1 実験ケースおよび示方配合

本研究で使用した短繊維の物性値および実験 ケースを表 - 1,表 - 2に示す。使用した短繊 維は鋼繊維およびポリプロプレン繊維(以下 PP 繊維)である。実験では,鋼繊維をコンクリート 体積の 0.5,1.0,1.5,3.0%混入,および鋼繊維 と PP 繊維を 1.5% ずつ混入の計 5 ケースの試験 体を用意した。表 - 3 にコンクリートの示方配 合を示す。示方配合において,短繊維は外割り 計算とした。また,混和剤は,短繊維混入率に 応じて,単位セメント量の 0.3~0.6%添加した。

表 - 1 短繊維の物性値

		-
短繊維種類	鋼繊維	PP繊維
繊維形状	両端フック型	波型
繊維長 (mm)	30)
断面寸法 (mm)	$f_{0.6}$	1.6×0.6
アスペクト比	50	54.2
密度 (kg/m ³)	7850	910
引張強度 (MPa)	1000	465
弾性係数 (GPa)	210	15

表-2 実験ケース

試験体名	短繊維種類	繊維混入率(%)
ST05		0.5
ST10	细始	1.0
ST15	亚 则	1.5
ST30		3.0
ST+PP15	鋼繊維+PP繊維	1.5+1.5

*1 東京工業大学大学院 理工学研究科 土木工学専攻 (正会員)

*2 東京工業大学大学院 理工学研究科 土木工学専攻 教授 工博 (正会員)

粗骨材の最大寸法	W/C	s/a	単位量 (kg/m ³)					
(mm)	(%)	(%)	W	С	S	G	混和剤	短繊維
20	55	50	182	332	884	887	短繊維混入率に応じて変化	外割り計算

表 - 3 示方配合

項目	記号	単位	値		
軸方向鉄筋断面積	A_s	mm^2	506.7		
軸方向鉄筋比	p_w	%	1.29		
ウェブ幅	b_w	mm	100		
せん断スパン長	а	mm	700		
有効高さ	d	mm	200		
せん断スパン有効高さ比	a/d	-	3.5		
せん断耐力*	V_s	kN	29.1		
曲げ破壊時の作用せん断力*	V_b	kN	99.5		
せん断余裕度	V_s/V_b	1	0.29		
* 工统治疗	520MD		て計管		

表 - 4 試験体概要

2.2 試験体概要

試験体概要を表 - 4 に,試験体概要図を図 -1 に示す。ここで,式(1)³⁾を用いてせん断耐力V。 を算出した。

$$V_s = 0.20 f_c^{1/3} \left(\frac{d}{1000} \right)^{1/4} p_w^{1/3} \left(0.75 + 1.4 \frac{d}{a} \right) b_w d \quad (1)$$

せん断破壊先行型となるように,試験体を設 計し,斜め引張破壊が生じるように断面を T 型 とした。また, せん断破壊を試験体片側スパン に限定するため, せん断補強筋(D6 SD295, fwv=325MPa)を試験体の片側に 100mm 間隔で配 置した。軸方向鉄筋には,ネジ状 PC 鋼棒 (D25 SBPD1080, fv=1174MPa)を用い,十分な定着を 確保するために,試験体端部より鉄筋を突出さ せ,ボルトとアンカープレートを設置した。

2.3 載荷試験概要

載荷は,油圧式 2000kN 万能試験機を用いて, 図 - 2 に示すように静的 2 点載荷とした。ただ し、斜めひび割れ発生位置を特定するために、 載荷を行い,斜めひび割れ発生位置を特定した 後, 0kN まで除荷を行い, 再び終局に至るまで 載荷を行った。載荷は丸型鋼棒を用いた点載荷 とし,支点は可動支点とした。支圧板と試験体 の間には,2枚のテフロンシートの間にグリース を挟んだ減摩パッドを挿入することで,支点の 水平方向の拘束をなくし,水平反力が生じない ようにした。

測定項目は,荷重,変位(スパン中央および 支点位置), コンクリートの圧縮縁ひずみ(スパ ン中央), 主鉄筋ひずみ(スパン中央), 曲げひ び割れ幅および斜めひび割れ幅である。標点間 100mmの 型変位計を用いて,曲げひび割れ幅 を測定した。斜めひび割れ幅の測定方法を 2.4 示す。

2.4 斜めひび割れ幅の測定

本研究では,二軸型亀裂変位計を用いて斜め ひび割れ幅の測定を行った。二軸型亀裂変位計 は,水平方向と垂直方向の変位を計測できる装 置である。以下にその測定方法を示す。

まず,載荷を行い,斜めひび割れ幅発生位置 を特定する。斜めひび割れ発生位置を特定した 後,除荷を行い,二軸型亀裂変位計を斜めひび 割れを跨ぐように設置する。その後,再載荷を 行うことで、斜めひび割れ幅を測定する。除荷 を行った際、斜めひび割れの残留ひび割れ幅は 非常に小さなものであったので,本研究ではこ

れを無視した。また,斜めひび割れは直線的に 進展せず,位置によって角度が異なったため, 斜めひび割れ角度 b は,斜めひび割れが主鉄筋 位置と交わる点と載荷点を直線で結ぶことによ って求めた。図 - 3に示すように,斜めひび割 れ幅の水平方向と垂直方向の測定値(x,y)を ベクトル変換し,斜めひび割れのずれ方向と直 交方向の値(s,t)を求めた。

3. 実験結果

3.1 破壊力学特性

RC はりのせん断耐力への短繊維補強の影響 を破壊力学特性値を用いて評価するために,各 試験体において,JCI 基準 JCI-S-001-2003 および JCI-S-002-2003 に準拠した破壊エネルギー測定 試験を行い,破壊エネルギーを算出した。図-4に 繊維混入率と破壊エネルギーの基本値 G_{F0} の関係を示す。式(2),(3)を用いて,破壊エネル ギー G_F および G_{F0} を算出した。

$$G_F = (W_0 + mg\boldsymbol{d}_0) / A_{lig}$$
⁽²⁾

$$G_{F0} = G_F (f_c' / f_{cmo})^{-0.7}$$
(3)

ここで, W_0 :実測された荷重 - 変位曲線下の面 積,mg:両支点間の試験体重量, d_0 :終局時の 載荷点変位, A_{lig} :リガメント部の面積, f_c ':コ ンクリートの圧縮強度, f_{cmo} :定数(=10MPa)で ある。

図 - 4に示されるように,鋼繊維のみを混入 した場合、繊維混入率の増加とともに G_{F0} は大き くなった。しかし,鋼繊維混入率が1.0%を超え ると, G_{F0} の増加率は急激に小さくなった。これ は,鋼繊維は強度および曲げ剛性が高いため, スナッビング(snubbing)による応力集中によって マトリクスが脆性的に破砕したことが原因であ ると考えられる⁴⁾。

それに対して, 合成繊維を混入した ST+PP15 では, ST15 および ST30 よりも*G_{F0}*が大きくな り, 高い破壊力学特性を示した。このことから, 合成繊維を混入することにより, スナッビング

表 - 5 載荷試験結果

試験体名	圧縮強度 (MPa)	引張強度 (MPa)	最大荷重 (kN)	破壊 モード
ST05	34.4	2.79	109.9	
ST10	31.2	2.01	125.9	釣み
ST15	31.4	2.03	123.7	示400
ST30	30.0	2.45	126.3	いては、このである。
ST+PP15	36.0	2.45	140.1	₩X 4衣

本文中に示す

によるマトリクスの脆性的な破砕を防ぐことが できると予想される。

3.2 載荷試験結果

(1) 荷重 - 変位関係

表 - 5 に載荷試験結果を,図 - 5 に荷重 - 変 位関係を示す。ST05 を除く4 体は斜め引張破壊 を起こした。図 - 5 (b)に示すように,ST05 で は,約 90kN で荷重が一度低下したが,その後, 再び荷重が上昇した。また,最大荷重以降も急 激な荷重の低下はみられなかった。これは,は りにタイドアーチ的な耐荷機構が形成されたた め,斜め引張破壊で観察されるような最大荷重 以降の急激な荷重低下が発生しなかったものと 考えられる。

ST+PP15 は最大荷重が 140.1kN と最も高く, その上,最大荷重に達した後の急激な荷重低下 がみられず,他の試験体よりも高い靭性を有し ていることが確認できる(図 - 5(f))。それに対 して,ST10,ST15,ST30 はいずれも,最大荷重 が125kN 程度であり,荷重 - 変位関係にもほと んど差はみられず,最大荷重に達した後,荷重 が急激に低下した(図 - 5(c)(d)(e))。せん断試 験においても,破壊エネルギー測定試験の結果 と同様の傾向を示し,鋼繊維混入率が 1.0%を超

えると, せん断耐力はほとんど増加しなかった。 すなわち, 鋼繊維を単体で使用した場合, 混入 率が1.0%を超えると,斜めひび割れ面において, スナッビングによる応力集中が発生し, マトリ クスが脆性的な破砕を示したと考えられる。

(2) ひび割れ性状

図 - 6 に,載荷試験終了後の各試験体のひび 割れ状況を示す。ST05 では,図中に太線で示し た、破壊時に支配的となる斜めひび割れが2本 発生しており,破壊モードが他の試験体と異な ることが確認できる。すなわち,ST05 では,タ イドアーチ的な耐荷機構が形成されたために, 最大荷重に達した後も,荷重を保持し続けたと 考えられる。

耐力が同程度であった ST10, ST15, ST30 で は,ひび割れの角度や分布状況にほとんど差は みられない。それに対して,ST+PP15 には,多 数のひび割れが発生している。すなわち,ひび 割れ性状においても,合成繊維を混入したこと による効果を確認することができる。

図‐6 ひび割れ状況

4. せん断耐力の推定

- 4.1 せん断耐力推定手法の提案
- (1) RC はりの力の釣合

まず,斜め引張破壊時の力の釣合を考える。 図 - 7 に,斜めひび割れが発生したせん断補強 筋のない RC はりをモデル化した図を示す。斜め 引張破壊では,斜めひび割れが支配的であるの で,他に発生しているひび割れを無視し,斜め ひび割れのみが発生していると仮定する。また, 斜めひび割れは,試験体軸方向と角度bをなす 一直線であり,斜めひび割れに沿って,これに 直交する方向に,均等に平均引張応力s,が作用 していると仮定する。ここで,s,は,斜めひび 割れ面における,繊維の架橋効果や骨材のかみ 合わせ等に起因する引張応力である。実際には, 斜めひび割れ面では,直交方向だけでなく,ず れ方向にもかみ合わせや繊維の架橋効果による 応力が発生すると思われる。しかし,実験結果 によれば,ひび割れ面に沿うずれは、直交方向 の開きに比べて小さく,またそのばらつきも大

きかったため,今回のモデル化ではこれを無視し,斜めひび割れ面においては,直交方向にの み引張応力が作用すると仮定した。図-7に示 される力の釣合条件より,式(4)が得られる。

$$V_0 = \boldsymbol{s}_p \cdot \boldsymbol{b}_w \cdot \boldsymbol{L} \cdot \cos \boldsymbol{b} = \frac{\boldsymbol{s}_p \cdot \boldsymbol{b}_w \cdot \boldsymbol{z}}{\tan \boldsymbol{b}}$$
(4)

ここで, V_0 :せん断耐力, b_w :ウェブ幅,L: せん断ひび割れ長さ(= $z/\sin b$),z:モーメント アーム長(=7/8d)である。

斜めひび割れの角度 b と引張応力s, を決定 すれば,式(4)を用いることによって,斜め引張 破壊時のせん断耐力を求めることができる。ま た,この式は単純な力の釣合から導かれるもの であり,コンクリート種類によらず適用可能で ある。

(2) 斜めひび割れの分布

斜めひび割れ幅は,高さ方向の各位置によっ て異なると考えられる。そのため,斜めひび割 れ幅の分布を調べる必要がある。そこで,1つの 試験体において,2箇所以上で斜めひび割れ幅を 測定することができた ST10,ST15,ST30の斜 めひび割れ幅を用いて,斜めひび割れ幅の分布 の検討を行った。

実験より得られた斜めひび割れ幅の分布を図 - 8に示す。ここで,正規化ひび割れ幅とは, 最大荷重時に,各試験体において測定された斜 めひび割れ幅をその最大値で除した値である。 モーメントアーム長区間の上端の斜めひび割れ 幅は0であると仮定した。そして,各位置にお ける斜めひび割れ幅の平均値を結んだグラフを 作成し,このグラフの直線下の面積と等しくな るように,2直線で近似した斜めひび割れの分布 モデルを仮定した。このモデルで,斜めひび割 れ幅は,試験体上端より150mm(=(3/4)d)の位置 で最大となり,モーメントアーム長区間の上端 および下端においては0になるとする。このよ うに,斜めひび割れ幅の分布モデルを三角形と したのは,計算の簡便さを考慮したためである。

引張軟化曲線を用いると,斜めひび割れ幅お よび引張応力の分布は図-9のようになる。し

たがって,平均引張応力*s*,は式(5)によって求められる(図 - 10)。

$$\boldsymbol{s}_{p} = \frac{1}{w_{u}} \int_{0}^{w_{u}} \boldsymbol{s}(w) dw$$
(5)

ここで,限界ひび割れ幅 w_u は,試験体上端より, (3/4)*d* の位置における斜めひび割れ幅であり,実 験より得られた値から推定した。 4.2 提案手法の妥当性の検討

表 - 6 に,各試験体における **b**, w_u, s_p, 実験より得られたせん断耐力 V_{exp},式(4)より算 出したV₀および V_{exp}/V₀を示す。3.2 に示すよう に,ST05 では,破壊モードが斜め引張破壊とな らなかったため,以下の検討には用いないこと とした。

表 - 6より,限界ひび割れ幅 w_u は,すべての 試験体において,2mm 程度となった。しかし, s_p は,ST10とST15では1.5MPa 程度であるのに対 し,ST30とST+PP15では1.9MPa 程度となり, 両者に差がみられた。図 - 11 に,各試験体の引 張軟化曲線を示す。ST30の引張軟化曲線は,仮 想ひび割れ幅が1mmを超えると,スナッビング によるマトリクスの破砕が原因と思われるやや 急激な軟化挙動を示すが,軟化開始応力が大き いために, s_p は他のケースよりも大きな値を示 している。また,ST+PP15では,合成繊維の混 入によって,引張軟化曲線の第二勾配において 保持できる軟化応力が大きくなり,その結果, s_p

せん断耐力については,実験値と計算値の比 が 0.86~1.07 であることから,すべての試験体 において,妥当な精度でせん断耐力を推定でき ているといえる。このことから,本手法を用い ることにより,短繊維補強された RC はりのせん 断耐力を推定できる可能性が示された。

斜め引張破壊時における斜めひび割れの限界 幅 w_u および角度 b を予測できれば,本手法によって,短繊維補強された RC はりのせん断耐力の 算定が可能になると思われる。

5. まとめ

本研究から得られた知見を以下にまとめる。

- (1) 破壊力学的知見に基づき,短繊維補強された RC はりのせん断耐力の推定手法を提案した。
- (2) 鋼繊維を単体で使用する場合,繊維混入率が 1.0%を超えると破壊力学特性値およびせん 断耐力の増加率は急激に低下する。しかし, 合成繊維と同時に使用することで,単体で使

表 - 6 提案式と試験結果の比較

	ST10	ST15	ST30	ST+PP15
b (度)	24.3	23.2	24.9	22.6
w_u (mm)	2.11	2.09	2.07	2.23
\boldsymbol{s}_p (MPa)	1.52	1.50	1.94	1.86
V_{exp} (kN)	63.0	61.8	63.2	70.1
V_0 (kN)	58.9	61.2	73.1	78.2
V_{exp}/V_0	1.07	1.01	0.86	0.90

用する場合よりも,破壊力学特性およびせん 断耐力が高くなることが確認された。

謝辞

最後に,本研究を実施するにあたり,短繊維 を提供して頂きました,(株)ブリヂストン,萩原 工業(株),両社に厚く御礼申し上げます。

参考文献

- 1) 柳 博文,松岡 茂,武田康司,松尾庄二: 鋼繊維補強コンクリートのひび割れ分散効 果に対する実験的研究,コンクリート工学年 次論文集,Vol.20,No.3,pp.1225-1230,1998.6
- 2) 土木学会:鋼繊維補強鉄筋コンクリート柱部 材の設計指針(案),1999.11.
- 二羽淳一郎,山田一宇,横沢和夫,岡村 甫: せん断補強鉄筋を用いないRCはりのせん断 強度式の再評価,土木学会論文集, No.372/V-5, pp.167-176, 1986.8
- 4) 川又 篤,三橋博三,金子佳生,福山 洋: ハイブリッド型繊維補強セメント系複合材 料の靭性能に関する研究,コンクリート工学 年次論文集,Vol.23,No.2,pp.235-240,2001.6